On Sat, Aug 02, 2014 at 10:22:20AM +0200, Kurt Ewald wrote:
> s4 := Group((1,2,3,4),(1,2));; s3 := Group((1,2,3),(1,2));;
> 
>  
> 
> hom := GroupHomomorphismByImages( s4 , s3, GeneratorsOfGroup(s4),
> [(1,2),(2,3)];
> 
>  
> 
> What is [(1,2),(2,3)] and how can I get this list in other examples?
this is a list of generators of s3 so that the original generators of s4 are 
mapped to by hom.

If you know the kernel of the homomorphism then you can create the quotient 
group: e.g.
in this case set
gap> h:=Subgroup(s4,[(1,2)(3,4),(1,3)(2,4)]);;
gap> s3f:=s4/h;; # this creates a finitely presented group

# or better you can do
gap> hom1:=ActionHomomorphism(s4,RightCosets(s4,h),OnRight);;
gap> Image(hom1); # this is S_3 in a regular representation


HTH,
Dmitrii


> 
>  
> 
> Best Regards
> 
>  
> 
> Kurt Ewald
> 
>  
> 
>  
> 
> _______________________________________________
> Forum mailing list
> Forum@mail.gap-system.org
> http://mail.gap-system.org/mailman/listinfo/forum

_______________________________________________
Forum mailing list
Forum@mail.gap-system.org
http://mail.gap-system.org/mailman/listinfo/forum

Reply via email to