Hi, I want to define subgroups of Sp(4,Z) of the form:
G_0\left(N\right) = \left\{ \left( \begin{array}{cccc} \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & N \mathbb{Z} \\ N \mathbb{Z} & \mathbb{Z} & N \mathbb{Z} & N^2 \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & N \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} & \mathbb{Z} & \mathbb{Z} \end{array} \right) \right\} \cap Sp\left(4,\mathbb{Z}\right) and then find their generators. Is it possible to define such subgroups in GAP? I'm having trouble doing it.. It looks like Sage might offer a little more functionality here, but I couldn't figure out how to do it there either. Thanks for any help! James Read _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum