On Tue, September 8, 2015 11:48 am, fahime babaee wrote: > > By Schreiers formula we know that the rank of a finite index subgroup of > a free group of finite rank is finite. How can I find this set of > generators in gap? For example if we take natural homorphism from the free > group f(x,y) to the symmetric group S_n, we know that the kernel has rank > n!+1, How can I find a set of generators of the kernel?
You can do this as follows (for illustration, put n := 4): gap> F := FreeGroup("x","y"); <free group on the generators [ x, y ]> gap> S4 := SymmetricGroup(4); Sym( [ 1 .. 4 ] ) gap> phi := GroupHomomorphismByImages(F,S4,GeneratorsOfGroup(F),GeneratorsOfGroup(S4)); [ x, y ] -> [ (1,2,3,4), (1,2) ] gap> K := Kernel(phi); Group(<free, no generators known>) gap> gens := GeneratorsOfGroup(K); [ y^-2, x*y^-2*x^-1, x^-4, x^-1*y^-2*x, x^2*y^-2*x^-2, (y*x)^2*y^-1*x, y*(x*y^-1)^2*x, y*x^-4*y^-1, (y*x^-1)^2*y^-1*x^-1, y*(x^-1*y^-1)^2*x^-1, x*y*x^-4*y^-1*x^-1, x*(y*x^-1)^2*y^-1*x^-2, x*y*(x^-1*y^-1)^2*x^-2, x^-1*(y*x)^2*y^-1*x^-2, x^-1*y*(x*y^-1)^2*x^-2, x^-1*y*x^-4*y^-1*x, y*x^2*y^-2*x^-2*y^-1, x^2*y*x^-4*y^-1*x^-2, x*y*x^2*y^-2*x^-2*y^-1*x^-1, x^-1*y*x^2*y^-2*x^-2*y^-1*x, y*x^2*y*x*y^-1*x^-2*y^-1*x, y*x^2*y*(x^-1*y^-1*x^-1)^2, x^2*y*x^2*y^-1*(y^-1*x^-2)^2, x*y*x^2*y*(x^-1*y^-1*x^-1)^2*x^-1, x^-1*y*x^2*y*x*(y^-1*x^-2)^2 ] gap> Length(gens); 25 Hope this helps, Stefan _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum