For at least some groups, the obvious commands work: for instance
gap> g := SmallGroup(1536,10^6); <pc group of size 1536 with 10 generators> gap> Intersection(MaximalNormalSubgroups(g)); Group([ f6, f7, f8, f9 ]) gap> s := TransitiveGroup(24,1000); t24n1000 gap> Intersection(MaximalNormalSubgroups(s)); <permutation group of size 96 with 6 generators> I’m not sure what the limitations of the available methods fro MaximalNormalSubgroups are, nor whether a method targeted directly at the Radical could be significantly more efficient. Steve > On 21 Nov 2015, at 21:20, Will Chen <oxei...@gmail.com> wrote: > > Here by Jacobson radical I mean the intersection of all maximal normal > subgroups. > > Thanks, > > - Will > > -- > > William Yun Chen > Ph.D. Student & Graduate Teaching Associate > Department of Mathematics > Pennsylvania State University, University Park, PA, 16801 > che...@math.psu.edu > oxei...@gmail.com > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum