If you only care about the result: Aut(D_2n) is isomorphic to the semi-direct product
Z/n x| (Z/n)^x for the natural action of the units on the ring. You can even take n = \infty in that formula. > On Jul 18, 2016, at 11:56 AM, abdulhakeem alayiwola <lovepgro...@gmail.com> > wrote: > > Dear forum, > Can anyone in the house describe the steps to find Aut(D2n) using GAP. > Note that Aut(D2n) is Automorphism group of Dihedral group of order 2n. > Regards. > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum