Dear Surinder, No, in this case, LAGUNA can only speed up some calculations only for those units of this group algebra whose support consists only of elements whose order is a power of 3.
However, for such small example you can actually do something in GAP: * construct group algebra gap> F:=GF(3); GF(3) gap> G:=SymmetricGroup(3); Sym( [ 1 .. 3 ] ) gap> FG:=GroupRing(F,G); <algebra-with-one over GF(3), with 2 generators> * calculate its unit group gap> U:=Units(FG); <group with 5 generators> gap> time; 12484 gap> Size(U); 324 * find normalised units gap> nu:=Filtered(U,x -> IsOne(Augmentation(x)));; gap> Length(nu); 162 * construct normalised unit group gap> V:=Group(nu); <group with 162 generators> * construct and explore an isomorphic permutation group gap> phi:=IsomorphismPermGroup(V); <action isomorphism> gap> H:=Image(phi); <permutation group of size 162 with 162 generators> gap> IdGroup(H); [ 162, 41 ] gap> StructureDescription(H); "C3 x (((C3 x C3) : C3) : C2)" * find its minimal generating set and map it back to the group algebra gap> mgs:=MinimalGeneratingSet(H);; gap> List(mgs,u->PreImagesRepresentative(phi,u)); [ (Z(3))*()+(Z(3)^0)*(2,3)+(Z(3))*(1,2)+(Z(3)^0)*(1,2,3)+(Z(3)^0)*(1,3,2), (Z(3))*()+(Z(3))*(2,3)+(Z(3))*(1,2)+(Z(3))*(1,2,3)+(Z(3))*(1,3,2), (Z(3)^0)*()+(Z(3)^0)*(1,2)+(Z(3))* (1,2,3)+(Z(3)^0)*(1,3,2)+(Z(3))*(1,3) ] Hope this helps Alexander > On 4 Mar 2017, at 06:38, Surinder Kaur <surinder.k...@iitrpr.ac.in> wrote: > > Using LAGUNA package we can calculate the Normalized unit group of a > p-modular group algebra but can we find it if group algebra is not > p-modular like of (GF(3)S3) where S3 is symmetric group of order 6. > > > -- > *Regards* > *Surinder Kaur* > *Research scholar * > *Department of Mathematics * > *IIT Ropar* _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum