Dear Edward, > I'm using the homalg package to compute the homology of a chain complex, as > follows: > >> ZZ := HomalgRingOfIntegers( );; >> C2 := 1 * ZZ;; >> C1 := 1 * ZZ;; >> C0 := 1 * ZZ;; >> d2 := HomalgMap(HomalgMatrix("[2]", 1, 1, ZZ), C2, C1);; >> d1 := HomalgMap(HomalgMatrix("[0]", 1, 1, ZZ), C1, C0);; >> C := HomalgComplex(C0);; >> Add(C, d1);; >> Add(C, d2);; >> Display(Homology(C,1)); > Z/< 2 > > > However, this isn't an actual GAP group; for example running > >> IsIsomorphicGroup(Homology(C,1), CyclicGroup(2)); > > yields an error saying it can't find a suitable method. > > Is there any way of coercing the result of this computation into an actual > abelian group?
For any homalg ZZ-module M you can always use AbelianGroup( ElementaryDivisors( M ) ); If your interest is just the isomorphism type you can use ByASmallerPresentation( M ); Display( M ); Best wishes, Mohamed _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum