Dear Stefan,
think I can use this. If I compute h^2 gap> h^2; (x^2+2*y^2)*()+(2*x*y+y^2)*(1,2,3)+(2*x*y+y^2)*(1,3,2) then it's a matter of extracting the coefficients on the group elements by using Coefficients(B,h^2). Thank you very much! -Tim On Mon, 25 Sep 2017, Stefan Kohl wrote: > Dear Forum, > > Tim Kohl asked: > > I suppose what you would like to do is to compute in the > group ring Q[x,y,z]C_3, rather than in QC_3: > > gap> R := PolynomialRing(Rationals,["x","y","z"]); > Rationals[x,y,z] > gap> RC3:=GroupRing(R,Group((1,2,3)));; > gap> B := Basis(RC3);; > gap> AsList(B); > [ (1)*(), (1)*(1,2,3), (1)*(1,3,2) ] > gap> h := x*B[1]+y*B[2]+y*B[3]; > (x)*()+(y)*(1,2,3)+(y)*(1,3,2) > > Does this help you? > > Best regards, > > Stefan Kohl > > ----------------------------------------------------------------------------- > https://stefan-kohl.github.io/ > ----------------------------------------------------------------------------- > > > > > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum > -- Dr. Timothy Kohl | Desktop Services Specialist, Sr. Boston University Information Services & Technology | IT Help Center tk...@bu.edu | 617.353.8203 | bu.edu/tech
_______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum