I have what probably seems like a strange question: why are there theorems?
A theorem is essentially a statement to the effect that some domain is
structured in a particular way. If the theorem is interesting, the structure
characterized by the theorem is hidden and perhaps surprising.  So the
question is: why do so many structures have hidden internal structures?

Take the natural numbers: 0, 1, 2, 3, 4, ...  It seems so simple: just one
thing following another. Yet we have number theory, which is about the
structures hidden within the naturals. So the naturals aren't just one thing
following another. Why not? Why should there be any hidden structure?

If something as simple as the naturals has inevitable hidden structure, is
there anything that doesn't? Is everything more complex than it seems on its
surface? If so, why is that? If not, what's a good example of something that
isn't.


-- Russ Abbott
______________________________________

 Professor, Computer Science
 California State University, Los Angeles

 cell:  310-621-3805
 blog: http://russabbott.blogspot.com/
 vita:  http://sites.google.com/site/russabbott/
______________________________________
============================================================
FRIAM Applied Complexity Group listserv
Meets Fridays 9a-11:30 at cafe at St. John's College
lectures, archives, unsubscribe, maps at http://www.friam.org

Reply via email to