I just looked at Doron Zeilberger's latest paper

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimPDF/babushkas.html

and implemented the differential operator from page 5:

D2(f: POLY INT): POLY INT == z2*D(f, z2) + 1/2*z1^4*D(f, z2, 2) + z1^3*D(D(f, 
z2), z1) + 1/2*z1^2*D(f, z1, 2) + z1^3*D(f, z2)+z1^2*D(f,z1)+z2*f

p2(0)==1; p2(n) == D2 p2(n-1)

But to my great surprise I get

(3) -> eval(p2 17, [z1=1, z2=1])

   (3)  47609742627231823142148

whereas Doron (and maple) gives

        47609742627231823142029

the other first 17 values coincide...

----------------------------------------------------------------------
An hour later:
----------------------------------------------------------------------

the bug is in the coercion routines:

D2chk(f: POLY INT): POLY FRAC INT == z2*D(f, z2) + 1/2*z1^4*D(f, z2, 2)+ 
z1^3*D(D(f, z2), z1) + 1/2*z1^2*D(f, z1, 2) + z1^3*D(f,z2)+z1^2*D(f,z1)+z2*f

gives the correct result.

This is quite terrible, I think.

Martin


D2(f: POLY INT): POLY INT == z2*D(f, z2) + 1/2*z1^4*D(f, z2, 2) + z1^3*D(D(f, 
z2), z1) + 1/2*z1^2*D(f, z1, 2) + z1^3*D(f, z2)+z1^2*D(f,z1)+z2*f

p2(0)==1; p2(n) == D2 p2(n-1)

D2chk(f: POLY INT): POLY FRAC INT == z2*D(f, z2) + 1/2*z1^4*D(f,z2, 2) + 
z1^3*D(D(f, z2), z1) + 1/2*z1^2*D(f, z1, 2) + z1^3*D(f,z2)+z1^2*D(f, z1)+z2*f

p2chk(0)==1; p2chk(n) == D2chk p2chk(n-1)

----------------------------------------------------------------------

(5) -> [p2 n - p2chk n for n in 1..17]
   Compiling function D2 with type Polynomial(Integer) ->
   Polynomial(Integer) 
   Compiling function p2 with type Integer -> Polynomial(Integer) 
   Compiling function p2 as a recurrence relation.
   Compiling function D2chk with type Polynomial(Integer) ->
   Polynomial(Fraction(Integer)) 
   Compiling function p2chk with type Integer ->
   Polynomial(Fraction(Integer)) 
   Compiling function p2chk as a recurrence relation.

   (5)
   [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        14      13       12       11      10     9         16       13
   12      9
    (2z1   + 8z1   + 17z1   + 14z1   + 5z1   + z1 )z2 + 4z1   + 32z1   +
   32z1   + 4z1 ]

--~--~---------~--~----~------------~-------~--~----~
You received this message because you are subscribed to the Google Groups 
"FriCAS - computer algebra system" group.
To post to this group, send email to [email protected]
To unsubscribe from this group, send email to 
[email protected]
For more options, visit this group at 
http://groups.google.com/group/fricas-devel?hl=en
-~----------~----~----~----~------~----~------~--~---

Reply via email to