> > So yes, I would be in favour of renaming Pfaffian to pfaffian and
> > remove the "mrv_" in front of all exports from the MrvLimitPackage.

In a first patch I renamed mrv_foo to mrvFoo. This works fine.
The second one removes mrv for the two main exports mrv_limit(...)
but this does not compile.

I don't know why and had no time to take a deeper look yet.

-- 
You received this message because you are subscribed to the Google Groups 
"FriCAS - computer algebra system" group.
To post to this group, send email to [email protected].
To unsubscribe from this group, send email to 
[email protected].
For more options, visit this group at 
http://groups.google.com/group/fricas-devel?hl=en.

Index: mrv_limit.spad.pamphlet
===================================================================
--- mrv_limit.spad.pamphlet	(revision 1501)
+++ mrv_limit.spad.pamphlet	(working copy)
@@ -53,31 +53,31 @@
    U ==> Union(OFE, TwoSide, "failed")
 
    Exports ==> with
-      mrv_limit : (FE, EQ OFE) -> U
+      mrvLimit : (FE, EQ OFE) -> U
         ++ Compute limit(f(x), x=a) for a finite or infinite limit point a
 
-      mrv_limit : (FE, EQ FE, String) -> RESULT
+      mrvLimit : (FE, EQ FE, String) -> RESULT
         ++ Compute limit(f(x), x=a) for a strictly finite limit point a
         ++ This function computes one-sided limits from the left or right
 
-      mrv_normalize : (FE, Symbol, STATE_REC) -> FE
-        ++ mrv_normalize(f, x) transform f to the form acceptable
-        ++ by core variant of mrv_limit.
-      mrv_limit : (FE, Symbol, STATE_REC) -> RESULT
+      mrvNormalize : (FE, Symbol, STATE_REC) -> FE
+        ++ mrvNormalize(f, x) transform f to the form acceptable
+        ++ by core variant of mrvLimit.
+      mrvLimit : (FE, Symbol, STATE_REC) -> RESULT
         ++ Compute limit.
-      mrv_limit1 : (FE, Symbol) -> RESULT
+      mrvLimit1 : (FE, Symbol) -> RESULT
         ++ normalize and compute limit.
-      mrv_sign : (FE, Symbol, STATE_REC) -> Union(Integer, "failed")
-      mrv_cmp : (K, K, Symbol, STATE_REC) -> CMP_RESU
+      mrvSign : (FE, Symbol, STATE_REC) -> Union(Integer, "failed")
+      mrvCmp : (K, K, Symbol, STATE_REC) -> CMP_RESU
         ++ Compare kernels
-      mrv_set : (FE, Symbol, STATE_REC) -> SET_RESU
+      mrvSet : (FE, Symbol, STATE_REC) -> SET_RESU
         ++ Compute MRV set
-      expr_to_series : (FE, K, STATE_REC) -> SER_RESU
+      exprToSeries : (FE, K, STATE_REC) -> SER_RESU
         ++ Compute degree and leading coefficinet of series expansion
-      mrv_rewrite : (FE, List K, List FE, Symbol, STATE_REC) -> SER_RESU
+      mrvRewrite : (FE, List K, List FE, Symbol, STATE_REC) -> SER_RESU
         ++ rewrite
-      mrv_rewrite0 : (FE, List K, List FE, FE) -> FE
-        ++ mrv_rewrite0
+      mrvRewrite0 : (FE, List K, List FE, FE) -> FE
+        ++ mrvRewrite0
 
    Implementation ==> add
       import ToolsForSign(R)
@@ -99,7 +99,7 @@
 
       EFSTRUC ==> ElementaryFunctionStructurePackage(R, FE)
 
-      mrv_normalize(f, x, state) ==
+      mrvNormalize(f, x, state) ==
           f := normalize(f)$EFSTRUC
           tf := tower(f)
           rtf : List(K) := []
@@ -122,9 +122,9 @@
               nm = 'exp => "iterate"
               nm = 'log => "iterate"
               #args = 1 =>
-                  lau := mrv_limit(arg1 := args(1), x, state)
+                  lau := mrvLimit(arg1 := args(1), x, state)
                   -- la := lau::OFE
-                  -- la := mrv_limit(arg1 := args(1), x)
+                  -- la := mrvLimit(arg1 := args(1), x)
                   nm = 'atan =>
                           lau case "failed" =>
                               ns := new()$Symbol
@@ -167,7 +167,7 @@
 
       SIGNEF ==> ElementaryFunctionSign(Integer, FE)
 
-      mrv_bounded1(e : FE, state : STATE_REC) :  Boolean ==
+      mrvBounded1(e : FE, state : STATE_REC) :  Boolean ==
           ke := kernels(e)
           ne := numer(e)
           de := denom(e)
@@ -190,10 +190,10 @@
             not(empty?(setIntersection(vde, state.atan_syms))) => false
           empty?(setIntersection(kernels(ne::FE), state.tan_kers))
 
-      mrv_bounded(state : STATE_REC) : (FE -> Boolean) ==
-          e +-> mrv_bounded1(e, state)
+      mrvBounded(state : STATE_REC) : (FE -> Boolean) ==
+          e +-> mrvBounded1(e, state)
 
-      mrv_invertible(state : STATE_REC) : (FE -> Boolean) ==
+      mrvInvertible(state : STATE_REC) : (FE -> Boolean) ==
           var_syms := concat(state.tan_syms, state.atan_syms)
           (e : FE) : Boolean +->
               empty?(setIntersection(variables(e), var_syms)) => true
@@ -217,13 +217,13 @@
 
       -- compute leading term and degree of expansion of e into
       -- generalized power series with respect to k
-      expr_to_series(e : FE, k : K, state : STATE_REC) : SER_RESU ==
+      exprToSeries(e : FE, k : K, state : STATE_REC) : SER_RESU ==
          ex : FE := eval(e, [k], [series_x :: FE])
          not(is?(k, 'exp)) =>
                          error "Can only expand with respect to exp"
          h := argument(k).1
          ss := exprToPS(ex, false, "complex", true, h,
-                        mrv_bounded(state), mrv_invertible(state))$ppack
+                        mrvBounded(state), mrvInvertible(state))$ppack
          ss case %problem => "failed"
          ssl := ss.%series
          kk : Integer := 0
@@ -246,14 +246,14 @@
 
       -- compare comparability classes of two kernels, uses
       -- Gruntz Lemma 3.6
-      mrv_cmp(x : K, y : K, v : Symbol, state : STATE_REC) : CMP_RESU ==
+      mrvCmp(x : K, y : K, v : Symbol, state : STATE_REC) : CMP_RESU ==
         x1 : FE :=
             is?(x, "exp" :: Symbol) => argument(x).1
             log(x :: FE)
         y1 : FE :=
             is?(y, "exp" :: Symbol) => argument(y).1
             log(y :: FE)
-        ppu := mrv_limit(x1/y1, v, state)
+        ppu := mrvLimit(x1/y1, v, state)
         ppu case OFE =>
            pp1 := ppu::OFE
            pp1 = (0::OFE) => [-1, 0]
@@ -267,14 +267,14 @@
       -- exponentials
       -- as a byproduct we compute list of constanst such that
       -- res.i =~ res.1^(res_c.i)
-      mrv_set(e : FE, x : Symbol, state : STATE_REC) : SET_RESU ==
+      mrvSet(e : FE, x : Symbol, state : STATE_REC) : SET_RESU ==
         kers := tower(e)
         res_k : K := kernels(x::FE).1
         res : List K := [res_k]
         res_c : List FE := [1::FE]
         for y in kers repeat
            is?(y, "exp" :: Symbol) =>
-              icu := mrv_cmp(y, res_k, x, state)
+              icu := mrvCmp(y, res_k, x, state)
               icu case "failed" => return "failed"
               ic := icu::CMP_RES
               i := ic.sign
@@ -298,7 +298,7 @@
       -- we assume that simpler kernels are earlier on he list,
       -- more precisely, if lx.i is a subexpression of lx.j then
       -- i <= j
-      mrv_rewrite1(e : FE, lx : List K, ly : List FE) : FE ==
+      mrvRewrite1(e : FE, lx : List K, ly : List FE) : FE ==
         rlx := reverse(lx)
         rly := reverse(ly)
         for x in rlx for y in rly repeat
@@ -315,7 +315,7 @@
       --
       -- lx.1 is equivalent to omega, but normalized so that it
       -- goes to 0 when v goes to infinity
-      mrv_rewrite0(e : FE, lx : List K, lc : List FE, x00 : FE) : FE ==
+      mrvRewrite0(e : FE, lx : List K, lc : List FE, x00 : FE) : FE ==
          c0 := first lc
          (#lx = 1) and (c0 = 1) => e
          e0 := argument(kernels(x00).1).1
@@ -330,7 +330,7 @@
          else
             ly := cons(x00^c0, ly)
             lxx := lx
-         mrv_rewrite1(e, lxx, ly)
+         mrvRewrite1(e, lxx, ly)
 
       -- Rewrite in terms of mrv kernel and compute leading term of
       -- series expansion
@@ -339,13 +339,13 @@
       --    lx        list of mrv kernels
       --    lc        coefficients so that lx.i =~ lx.1 ^(lc.i)
       --    v         variable
-      mrv_rewrite(e : FE, lx : List K, lc : List FE, v : Symbol,
+      mrvRewrite(e : FE, lx : List K, lc : List FE, v : Symbol,
                   state : STATE_REC) : SER_RESU ==
          x0 := first lx
          -- Shift up, if needed and recurse
          is?(x0, v :: Symbol) =>
             lxx : List K := [kernels(eval(ei::FE, [x0], [exp(v::FE)])).1 for ei in lx]
-            mrv_rewrite(eval(e, [x0], [exp(v::FE)]), lxx, lc, v, state)
+            mrvRewrite(eval(e, [x0], [exp(v::FE)]), lxx, lc, v, state)
          -- Sanity check
          ~ is?(x0, "exp" :: Symbol) =>
             error "mrv is not exp, need substitution"
@@ -358,7 +358,7 @@
          -- kk := kernels(argument(x0).1)
          lip : RESULT :=
                e0 = (v::FE) => plusInfinity()@OFE
-               mrv_limit(e0, v, state)
+               mrvLimit(e0, v, state)
          lip case OFE =>
             lipp : OFE := lip :: OFE
             ss : Integer := whatInfinity(lipp)
@@ -374,45 +374,45 @@
                x00 := x0 :: FE
                lxx := lx
             -- do the rewrite
-            e := mrv_rewrite0(e, lxx, lcc, x00)
-            expr_to_series(e, kernels(x00).1, state)
+            e := mrvRewrite0(e, lxx, lcc, x00)
+            exprToSeries(e, kernels(x00).1, state)
          error "limit failed"
 
-      mrv_sign(e : FE, v : Symbol, state : STATE_REC
+      mrvSign(e : FE, v : Symbol, state : STATE_REC
               ) : Union(Integer, "failed") ==
          ~ member?(v::Symbol, variables(e)) => sign(e)$SIGNEF
          --    (s := sign(e)$SIGNEF) case Integer =>
          --       return s
          --    error "Can not determine sign"
-         rkcu := mrv_set(e, v, state)
+         rkcu := mrvSet(e, v, state)
          rkcu case "failed" => "failed"
          rkc := rkcu::SET_RES
          lx := rkc.lk
          lcc := rkc.lc
-         ssu : SER_RESU := mrv_rewrite(e, lx, lcc, v, state)
+         ssu : SER_RESU := mrvRewrite(e, lx, lcc, v, state)
          ssu case "failed" => "failed"
          ss := ssu::SER_RES
-         mrv_sign(ss.coeff, v, state)
+         mrvSign(ss.coeff, v, state)
 
       -- Compute limit of e when v goes to infinity
-      mrv_limit(e : FE, v : Symbol, state : STATE_REC) : RESULT ==
+      mrvLimit(e : FE, v : Symbol, state : STATE_REC) : RESULT ==
          ~ member?(v, (ve := variables(e))) =>
              empty?(setIntersection(ve, state.tan_syms)) and
                empty?(setIntersection(ve, state.atan_syms)) => e :: OFE
              "failed"
-         rkcu := mrv_set(e, v, state)
+         rkcu := mrvSet(e, v, state)
          rkcu case "failed" => "failed"
          rkc := rkcu::SET_RES
          lx := rkc.lk
          lcc := rkc.lc
-         ssu : SER_RESU := mrv_rewrite(e, lx, lcc, v, state)
+         ssu : SER_RESU := mrvRewrite(e, lx, lcc, v, state)
          ssu case "failed" => "failed"
          ss := ssu::SER_RES
          deg := ss.degree
          deg > 0 => 0
-         deg = 0 => mrv_limit(ss.coeff, v, state)
+         deg = 0 => mrvLimit(ss.coeff, v, state)
          deg < 0 =>
-               su := mrv_sign(ss.coeff, v, state)
+               su := mrvSign(ss.coeff, v, state)
                su case "failed" => "failed"
                s := su::Integer
                s = 1 =>
@@ -421,12 +421,12 @@
                    minusInfinity()
                error "Nonzero term has no sign"
 
-      mrv_limit1(e : FE, x : Symbol) : RESULT ==
+      mrvLimit1(e : FE, x : Symbol) : RESULT ==
           state := [[], [], [], []]$STATE_REC
-          e := mrv_normalize(e, x, state)
-          mrv_limit(e, x, state)
+          e := mrvNormalize(e, x, state)
+          mrvLimit(e, x, state)
 
-      mrv_limit(e : FE, eq : EQ OFE) : U ==
+      mrvLimit(e : FE, eq : EQ OFE) : U ==
           (f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" =>
               error "limit:left hand side must be a variable"
 
@@ -439,7 +439,7 @@
 
           -- Case positive infinity
           ii = 1 =>
-              resu := mrv_limit1(e, v)
+              resu := mrvLimit1(e, v)
               resu case "failed" => "failed"
               resu::OFE
 
@@ -448,7 +448,7 @@
               -- replace x by -x
               vK := retract(v::FE)@Kernel(FE)
               et : FE := eval(e, vK, -vK::FE)
-              resu := mrv_limit1(et, v)
+              resu := mrvLimit1(et, v)
               resu case "failed" => "failed"
               resu::OFE
 
@@ -459,18 +459,18 @@
 
               -- replace x by a - 1/x
               et : FE := eval(e, vK, retract(a)@FE - inv(vK::FE))
-              ll := mrv_limit1(et, v)
+              ll := mrvLimit1(et, v)
 
               -- replace x by a + 1/x
               et : FE := eval(e, vK, retract(a)@FE + inv(vK::FE))
-              lr := mrv_limit1(et, v)
+              lr := mrvLimit1(et, v)
 
               ll = lr =>
                   lr case "failed" => "failed"
                   lr::OFE
               [ll, lr]$TwoSide
 
-      mrv_limit(e : FE, eq : EQ FE, s : String) : RESULT ==
+      mrvLimit(e : FE, eq : EQ FE, s : String) : RESULT ==
           (f := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
               error "limit:left hand side must be a variable"
 
@@ -481,12 +481,12 @@
           direction(s) = 1 =>
               vK := retract(v::FE)@Kernel(FE)
               et : FE := eval(e, vK, a + inv(vK::FE))
-              mrv_limit1(et, v)
+              mrvLimit1(et, v)
 
           -- From the left: replace x by a - 1/z
           direction(s) = -1 =>
               vK := retract(v::FE)@Kernel(FE)
               et : FE := eval(e, vK, a - inv(vK::FE))
-              mrv_limit1(et, v)
+              mrvLimit1(et, v)
 
 @
Index: limitps.spad.pamphlet
===================================================================
--- limitps.spad.pamphlet	(revision 1501)
+++ limitps.spad.pamphlet	(working copy)
@@ -393,7 +393,7 @@
         limit(fcn : FE, eq : EQ FE, str : String) ==
             limit2(fcn, eq, str,
                 (f : FE, x : SY, a : FE, s : String) : RESULT +->
-                (is_exp_log(f, x) => mrv_limit(fcn, eq, str)$MrvLimitPackage;
+                (is_exp_log(f, x) => mrvLimit(fcn, eq, str)$MrvLimitPackage;
                  limit3(f, x, a, s)))
 
     else
@@ -620,7 +620,7 @@
 
         limit(fcn : FE, eq : EQ OFE) ==
             limit1(fcn, eq, (f : FE, x : SY, a : OFE) : U +->
-                (is_exp_log(f, x) => mrv_limit(fcn, eq)$MrvLimitPackage;
+                (is_exp_log(f, x) => mrvLimit(fcn, eq)$MrvLimitPackage;
                  locallimit(f, x, a)))
 
     else
Index: limitps.spad.pamphlet
===================================================================
--- limitps.spad.pamphlet	(revision 1501)
+++ limitps.spad.pamphlet	(working copy)
@@ -393,7 +393,7 @@
         limit(fcn : FE, eq : EQ FE, str : String) ==
             limit2(fcn, eq, str,
                 (f : FE, x : SY, a : FE, s : String) : RESULT +->
-                (is_exp_log(f, x) => mrv_limit(fcn, eq, str)$MrvLimitPackage;
+                (is_exp_log(f, x) => limit(fcn, eq, str)$MrvLimitPackage;
                  limit3(f, x, a, s)))
 
     else
@@ -620,7 +620,7 @@
 
         limit(fcn : FE, eq : EQ OFE) ==
             limit1(fcn, eq, (f : FE, x : SY, a : OFE) : U +->
-                (is_exp_log(f, x) => mrv_limit(fcn, eq)$MrvLimitPackage;
+                (is_exp_log(f, x) => limit(fcn, eq)$MrvLimitPackage;
                  locallimit(f, x, a)))
 
     else
Index: mrv_limit.spad.pamphlet
===================================================================
--- mrv_limit.spad.pamphlet	(revision 1501)
+++ mrv_limit.spad.pamphlet	(working copy)
@@ -53,31 +53,31 @@
    U ==> Union(OFE, TwoSide, "failed")
 
    Exports ==> with
-      mrv_limit : (FE, EQ OFE) -> U
+      limit : (FE, EQ OFE) -> U
         ++ Compute limit(f(x), x=a) for a finite or infinite limit point a
 
-      mrv_limit : (FE, EQ FE, String) -> RESULT
+      limit : (FE, EQ FE, String) -> RESULT
         ++ Compute limit(f(x), x=a) for a strictly finite limit point a
         ++ This function computes one-sided limits from the left or right
 
-      mrv_normalize : (FE, Symbol, STATE_REC) -> FE
-        ++ mrv_normalize(f, x) transform f to the form acceptable
-        ++ by core variant of mrv_limit.
-      mrv_limit : (FE, Symbol, STATE_REC) -> RESULT
+      mrvNormalize : (FE, Symbol, STATE_REC) -> FE
+        ++ mrvNormalize(f, x) transform f to the form acceptable
+        ++ by core variant of mrvLimit.
+      mrvLimit : (FE, Symbol, STATE_REC) -> RESULT
         ++ Compute limit.
-      mrv_limit1 : (FE, Symbol) -> RESULT
+      mrvLimit1 : (FE, Symbol) -> RESULT
         ++ normalize and compute limit.
-      mrv_sign : (FE, Symbol, STATE_REC) -> Union(Integer, "failed")
-      mrv_cmp : (K, K, Symbol, STATE_REC) -> CMP_RESU
+      mrvSign : (FE, Symbol, STATE_REC) -> Union(Integer, "failed")
+      mrvCmp : (K, K, Symbol, STATE_REC) -> CMP_RESU
         ++ Compare kernels
-      mrv_set : (FE, Symbol, STATE_REC) -> SET_RESU
+      mrvSet : (FE, Symbol, STATE_REC) -> SET_RESU
         ++ Compute MRV set
-      expr_to_series : (FE, K, STATE_REC) -> SER_RESU
+      exprToSeries : (FE, K, STATE_REC) -> SER_RESU
         ++ Compute degree and leading coefficinet of series expansion
-      mrv_rewrite : (FE, List K, List FE, Symbol, STATE_REC) -> SER_RESU
+      mrvRewrite : (FE, List K, List FE, Symbol, STATE_REC) -> SER_RESU
         ++ rewrite
-      mrv_rewrite0 : (FE, List K, List FE, FE) -> FE
-        ++ mrv_rewrite0
+      mrvRewrite0 : (FE, List K, List FE, FE) -> FE
+        ++ mrvRewrite0
 
    Implementation ==> add
       import ToolsForSign(R)
@@ -99,7 +99,7 @@
 
       EFSTRUC ==> ElementaryFunctionStructurePackage(R, FE)
 
-      mrv_normalize(f, x, state) ==
+      mrvNormalize(f, x, state) ==
           f := normalize(f)$EFSTRUC
           tf := tower(f)
           rtf : List(K) := []
@@ -122,9 +122,9 @@
               nm = 'exp => "iterate"
               nm = 'log => "iterate"
               #args = 1 =>
-                  lau := mrv_limit(arg1 := args(1), x, state)
+                  lau := mrvLimit(arg1 := args(1), x, state)
                   -- la := lau::OFE
-                  -- la := mrv_limit(arg1 := args(1), x)
+                  -- la := mrvLimit(arg1 := args(1), x)
                   nm = 'atan =>
                           lau case "failed" =>
                               ns := new()$Symbol
@@ -167,7 +167,7 @@
 
       SIGNEF ==> ElementaryFunctionSign(Integer, FE)
 
-      mrv_bounded1(e : FE, state : STATE_REC) :  Boolean ==
+      mrvBounded1(e : FE, state : STATE_REC) :  Boolean ==
           ke := kernels(e)
           ne := numer(e)
           de := denom(e)
@@ -190,10 +190,10 @@
             not(empty?(setIntersection(vde, state.atan_syms))) => false
           empty?(setIntersection(kernels(ne::FE), state.tan_kers))
 
-      mrv_bounded(state : STATE_REC) : (FE -> Boolean) ==
-          e +-> mrv_bounded1(e, state)
+      mrvBounded(state : STATE_REC) : (FE -> Boolean) ==
+          e +-> mrvBounded1(e, state)
 
-      mrv_invertible(state : STATE_REC) : (FE -> Boolean) ==
+      mrvInvertible(state : STATE_REC) : (FE -> Boolean) ==
           var_syms := concat(state.tan_syms, state.atan_syms)
           (e : FE) : Boolean +->
               empty?(setIntersection(variables(e), var_syms)) => true
@@ -217,13 +217,13 @@
 
       -- compute leading term and degree of expansion of e into
       -- generalized power series with respect to k
-      expr_to_series(e : FE, k : K, state : STATE_REC) : SER_RESU ==
+      exprToSeries(e : FE, k : K, state : STATE_REC) : SER_RESU ==
          ex : FE := eval(e, [k], [series_x :: FE])
          not(is?(k, 'exp)) =>
                          error "Can only expand with respect to exp"
          h := argument(k).1
          ss := exprToPS(ex, false, "complex", true, h,
-                        mrv_bounded(state), mrv_invertible(state))$ppack
+                        mrvBounded(state), mrvInvertible(state))$ppack
          ss case %problem => "failed"
          ssl := ss.%series
          kk : Integer := 0
@@ -246,14 +246,14 @@
 
       -- compare comparability classes of two kernels, uses
       -- Gruntz Lemma 3.6
-      mrv_cmp(x : K, y : K, v : Symbol, state : STATE_REC) : CMP_RESU ==
+      mrvCmp(x : K, y : K, v : Symbol, state : STATE_REC) : CMP_RESU ==
         x1 : FE :=
             is?(x, "exp" :: Symbol) => argument(x).1
             log(x :: FE)
         y1 : FE :=
             is?(y, "exp" :: Symbol) => argument(y).1
             log(y :: FE)
-        ppu := mrv_limit(x1/y1, v, state)
+        ppu := mrvLimit(x1/y1, v, state)
         ppu case OFE =>
            pp1 := ppu::OFE
            pp1 = (0::OFE) => [-1, 0]
@@ -267,14 +267,14 @@
       -- exponentials
       -- as a byproduct we compute list of constanst such that
       -- res.i =~ res.1^(res_c.i)
-      mrv_set(e : FE, x : Symbol, state : STATE_REC) : SET_RESU ==
+      mrvSet(e : FE, x : Symbol, state : STATE_REC) : SET_RESU ==
         kers := tower(e)
         res_k : K := kernels(x::FE).1
         res : List K := [res_k]
         res_c : List FE := [1::FE]
         for y in kers repeat
            is?(y, "exp" :: Symbol) =>
-              icu := mrv_cmp(y, res_k, x, state)
+              icu := mrvCmp(y, res_k, x, state)
               icu case "failed" => return "failed"
               ic := icu::CMP_RES
               i := ic.sign
@@ -298,7 +298,7 @@
       -- we assume that simpler kernels are earlier on he list,
       -- more precisely, if lx.i is a subexpression of lx.j then
       -- i <= j
-      mrv_rewrite1(e : FE, lx : List K, ly : List FE) : FE ==
+      mrvRewrite1(e : FE, lx : List K, ly : List FE) : FE ==
         rlx := reverse(lx)
         rly := reverse(ly)
         for x in rlx for y in rly repeat
@@ -315,7 +315,7 @@
       --
       -- lx.1 is equivalent to omega, but normalized so that it
       -- goes to 0 when v goes to infinity
-      mrv_rewrite0(e : FE, lx : List K, lc : List FE, x00 : FE) : FE ==
+      mrvRewrite0(e : FE, lx : List K, lc : List FE, x00 : FE) : FE ==
          c0 := first lc
          (#lx = 1) and (c0 = 1) => e
          e0 := argument(kernels(x00).1).1
@@ -330,7 +330,7 @@
          else
             ly := cons(x00^c0, ly)
             lxx := lx
-         mrv_rewrite1(e, lxx, ly)
+         mrvRewrite1(e, lxx, ly)
 
       -- Rewrite in terms of mrv kernel and compute leading term of
       -- series expansion
@@ -339,13 +339,13 @@
       --    lx        list of mrv kernels
       --    lc        coefficients so that lx.i =~ lx.1 ^(lc.i)
       --    v         variable
-      mrv_rewrite(e : FE, lx : List K, lc : List FE, v : Symbol,
+      mrvRewrite(e : FE, lx : List K, lc : List FE, v : Symbol,
                   state : STATE_REC) : SER_RESU ==
          x0 := first lx
          -- Shift up, if needed and recurse
          is?(x0, v :: Symbol) =>
             lxx : List K := [kernels(eval(ei::FE, [x0], [exp(v::FE)])).1 for ei in lx]
-            mrv_rewrite(eval(e, [x0], [exp(v::FE)]), lxx, lc, v, state)
+            mrvRewrite(eval(e, [x0], [exp(v::FE)]), lxx, lc, v, state)
          -- Sanity check
          ~ is?(x0, "exp" :: Symbol) =>
             error "mrv is not exp, need substitution"
@@ -358,7 +358,7 @@
          -- kk := kernels(argument(x0).1)
          lip : RESULT :=
                e0 = (v::FE) => plusInfinity()@OFE
-               mrv_limit(e0, v, state)
+               mrvLimit(e0, v, state)
          lip case OFE =>
             lipp : OFE := lip :: OFE
             ss : Integer := whatInfinity(lipp)
@@ -374,45 +374,45 @@
                x00 := x0 :: FE
                lxx := lx
             -- do the rewrite
-            e := mrv_rewrite0(e, lxx, lcc, x00)
-            expr_to_series(e, kernels(x00).1, state)
+            e := mrvRewrite0(e, lxx, lcc, x00)
+            exprToSeries(e, kernels(x00).1, state)
          error "limit failed"
 
-      mrv_sign(e : FE, v : Symbol, state : STATE_REC
+      mrvSign(e : FE, v : Symbol, state : STATE_REC
               ) : Union(Integer, "failed") ==
          ~ member?(v::Symbol, variables(e)) => sign(e)$SIGNEF
          --    (s := sign(e)$SIGNEF) case Integer =>
          --       return s
          --    error "Can not determine sign"
-         rkcu := mrv_set(e, v, state)
+         rkcu := mrvSet(e, v, state)
          rkcu case "failed" => "failed"
          rkc := rkcu::SET_RES
          lx := rkc.lk
          lcc := rkc.lc
-         ssu : SER_RESU := mrv_rewrite(e, lx, lcc, v, state)
+         ssu : SER_RESU := mrvRewrite(e, lx, lcc, v, state)
          ssu case "failed" => "failed"
          ss := ssu::SER_RES
-         mrv_sign(ss.coeff, v, state)
+         mrvSign(ss.coeff, v, state)
 
       -- Compute limit of e when v goes to infinity
-      mrv_limit(e : FE, v : Symbol, state : STATE_REC) : RESULT ==
+      mrvLimit(e : FE, v : Symbol, state : STATE_REC) : RESULT ==
          ~ member?(v, (ve := variables(e))) =>
              empty?(setIntersection(ve, state.tan_syms)) and
                empty?(setIntersection(ve, state.atan_syms)) => e :: OFE
              "failed"
-         rkcu := mrv_set(e, v, state)
+         rkcu := mrvSet(e, v, state)
          rkcu case "failed" => "failed"
          rkc := rkcu::SET_RES
          lx := rkc.lk
          lcc := rkc.lc
-         ssu : SER_RESU := mrv_rewrite(e, lx, lcc, v, state)
+         ssu : SER_RESU := mrvRewrite(e, lx, lcc, v, state)
          ssu case "failed" => "failed"
          ss := ssu::SER_RES
          deg := ss.degree
          deg > 0 => 0
-         deg = 0 => mrv_limit(ss.coeff, v, state)
+         deg = 0 => mrvLimit(ss.coeff, v, state)
          deg < 0 =>
-               su := mrv_sign(ss.coeff, v, state)
+               su := mrvSign(ss.coeff, v, state)
                su case "failed" => "failed"
                s := su::Integer
                s = 1 =>
@@ -421,12 +421,12 @@
                    minusInfinity()
                error "Nonzero term has no sign"
 
-      mrv_limit1(e : FE, x : Symbol) : RESULT ==
+      mrvLimit1(e : FE, x : Symbol) : RESULT ==
           state := [[], [], [], []]$STATE_REC
-          e := mrv_normalize(e, x, state)
-          mrv_limit(e, x, state)
+          e := mrvNormalize(e, x, state)
+          mrvLimit(e, x, state)
 
-      mrv_limit(e : FE, eq : EQ OFE) : U ==
+      limit(e : FE, eq : EQ OFE) : U ==
           (f := retractIfCan(lhs eq)@Union(FE,"failed")) case "failed" =>
               error "limit:left hand side must be a variable"
 
@@ -439,7 +439,7 @@
 
           -- Case positive infinity
           ii = 1 =>
-              resu := mrv_limit1(e, v)
+              resu := mrvLimit1(e, v)
               resu case "failed" => "failed"
               resu::OFE
 
@@ -448,7 +448,7 @@
               -- replace x by -x
               vK := retract(v::FE)@Kernel(FE)
               et : FE := eval(e, vK, -vK::FE)
-              resu := mrv_limit1(et, v)
+              resu := mrvLimit1(et, v)
               resu case "failed" => "failed"
               resu::OFE
 
@@ -459,18 +459,18 @@
 
               -- replace x by a - 1/x
               et : FE := eval(e, vK, retract(a)@FE - inv(vK::FE))
-              ll := mrv_limit1(et, v)
+              ll := mrvLimit1(et, v)
 
               -- replace x by a + 1/x
               et : FE := eval(e, vK, retract(a)@FE + inv(vK::FE))
-              lr := mrv_limit1(et, v)
+              lr := mrvLimit1(et, v)
 
               ll = lr =>
                   lr case "failed" => "failed"
                   lr::OFE
               [ll, lr]$TwoSide
 
-      mrv_limit(e : FE, eq : EQ FE, s : String) : RESULT ==
+      limit(e : FE, eq : EQ FE, s : String) : RESULT ==
           (f := retractIfCan(lhs eq)@Union(SY,"failed")) case "failed" =>
               error "limit:left hand side must be a variable"
 
@@ -481,12 +481,12 @@
           direction(s) = 1 =>
               vK := retract(v::FE)@Kernel(FE)
               et : FE := eval(e, vK, a + inv(vK::FE))
-              mrv_limit1(et, v)
+              mrvLimit1(et, v)
 
           -- From the left: replace x by a - 1/z
           direction(s) = -1 =>
               vK := retract(v::FE)@Kernel(FE)
               et : FE := eval(e, vK, a - inv(vK::FE))
-              mrv_limit1(et, v)
+              mrvLimit1(et, v)
 
 @

Reply via email to