On 01/23/2017 04:58 PM, Waldek Hebisch wrote:
Note: I used wordInStrongGenerators as a helper

I find it hard to understand the functions in PermutationGroup. Partly because I cant find any documentation (I searched the usual places but its easy to miss things) and its hard to follow the code because Rep is so complicated.

For example, how does wordInGenerators work? I sort of expected that the generators would be represented by a single element in the word. So I expected that the following would give [[1],[2]]:

dg3 := dihedralGroup(3)

   (1)  <(1 2 3),(1 3)>
                  Type: PermutationGroup(Integer)
g := generators(dg3)

   (2)  [(1 2 3),(1 3)]
                 Type: List(Permutation(Integer))
[wordInGenerators(x,dg3) for x in g]

   (3)  [[1,2,2],[2]]
             Type: List(List(NonNegativeInteger))

I realise this is the same as [[1],[2]] because 2 is self inverse but it would be good if it could do some simplification.

wordsForStrongGenerators is different from wordInGenerators in that it does not seem to use indexes.

sg := strongGenerators(dg3)

   (4)  [(2 3),(1 3)]
                 Type: List(Permutation(Integer))
w := wordsForStrongGenerators(dg3)

   (5)  [[1,2],[2]]
             Type: List(List(NonNegativeInteger))

Now that I have your example hopefully I will now be able to understand it better.

Thanks,

Martin

--
You received this message because you are subscribed to the Google Groups "FriCAS - 
computer algebra system" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To post to this group, send email to [email protected].
Visit this group at https://groups.google.com/group/fricas-devel.
For more options, visit https://groups.google.com/d/optout.

Reply via email to