Indefinite integrals make no sense without specifying types. However, you may
take the definite integral.

(1) -> integrate(f,x=u..v)

            a u 2   a v 4         a u 4        a v 2      a u 2
         (%e   ) (%e   )  + (- (%e   )  - 1)(%e   )  + (%e   )
   (1)  ------------------------------------------------------
                                 a u 2   a v 2
                          8 a (%e   ) (%e   )
                  Type: Union(f1: OrderedCompletion(Expression(Integer)),...)
(2) -> limit(%,a=0)

   (11)  0
                      Type: Union(OrderedCompletion(Expression(Integer)),...)
(2) ->


Better would be anyway (use functions (==) instead of Expression (:=))

(5) -> h(a,x)== cosh(a * x) * sinh(a * x)
                                                                   Type: Void
(6) -> integrate(h(a,x),x)
   Compiling function h with type (Variable(a), Variable(x)) ->
      Expression(Integer)

                 2            2
        sinh(a x)  + cosh(a x)
   (6)  -----------------------
                  4 a
                                         Type: Union(Expression(Integer),...)
(7) -> integrate(h(0,x),x)
   Compiling function h with type (NonNegativeInteger, Variable(x)) ->
      Expression(Integer)

   (7)  0
                                         Type: Union(Expression(Integer),...)


You certainly know from calculus that

(9) -> integral(f,x)

           x
         ++
   (9)   |   cosh(%A a)sinh(%A a)d%A
        ++
                                                    Type: Expression(Integer)

is not necessarily continuous in "a" ;)

-- 
You received this message because you are subscribed to the Google Groups 
"FriCAS - computer algebra system" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion on the web visit 
https://groups.google.com/d/msgid/fricas-devel/5f1194f4-cf6d-4b34-8450-74b624b6e5b4%40googlegroups.com.

Reply via email to