Hi! Something I've discovered only when looking at the standard again while working on Fortran changes - linear clause with ref modifier should in C++ accept all arguments with reference type, not just those where it references integer or pointer (that is the restriction of all the other kinds).
The simd-clone-6.cc testcase ICEd also due to missing vectorizable_simd_clone_call hunks, fixed that as well. Bootstrapped/regtested on x86_64-linux and i686-linux, committed to trunk and 6.2. 2016-05-24 Jakub Jelinek <ja...@redhat.com> PR c++/71257 * tree-vect-stmts.c (vectorizable_simd_clone_call): Handle SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP like SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP. Add SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP and SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP cases explicitly. * semantics.c (finish_omp_clauses) <case OMP_CLAUSE_LINEAR>: For OMP_CLAUSE_LINEAR_REF don't require type to be integral or pointer. * g++.dg/vect/simd-clone-6.cc: New test. * g++.dg/gomp/declare-simd-6.C: New test. --- gcc/tree-vect-stmts.c.jj 2016-05-20 09:05:08.000000000 +0200 +++ gcc/tree-vect-stmts.c 2016-05-24 12:49:49.257147827 +0200 @@ -3012,8 +3012,10 @@ vectorizable_simd_clone_call (gimple *st { STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (bestn->decl); for (i = 0; i < nargs; i++) - if (bestn->simdclone->args[i].arg_type - == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP) + if ((bestn->simdclone->args[i].arg_type + == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP) + || (bestn->simdclone->args[i].arg_type + == SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP)) { STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_grow_cleared (i * 3 + 1); @@ -3148,6 +3150,7 @@ vectorizable_simd_clone_call (gimple *st vargs.safe_push (op); break; case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP: + case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP: if (j == 0) { gimple_seq stmts; @@ -3211,6 +3214,8 @@ vectorizable_simd_clone_call (gimple *st vargs.safe_push (new_temp); } break; + case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP: + case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP: case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP: --- gcc/cp/semantics.c.jj 2016-05-13 22:23:03.000000000 +0200 +++ gcc/cp/semantics.c 2016-05-24 11:04:15.160634109 +0200 @@ -5881,7 +5881,7 @@ finish_omp_clauses (tree clauses, enum c break; } } - else + else if (OMP_CLAUSE_LINEAR_KIND (c) != OMP_CLAUSE_LINEAR_REF) { if (!INTEGRAL_TYPE_P (type) && TREE_CODE (type) != POINTER_TYPE) --- gcc/testsuite/g++.dg/vect/simd-clone-6.cc.jj 2016-05-24 12:58:46.321054736 +0200 +++ gcc/testsuite/g++.dg/vect/simd-clone-6.cc 2016-05-24 13:33:16.261767563 +0200 @@ -0,0 +1,43 @@ +// PR c++/71257 +// { dg-require-effective-target vect_simd_clones } +// { dg-additional-options "-fopenmp-simd -fno-inline" } +// { dg-additional-options "-mavx" { target avx_runtime } } + +#include "../../gcc.dg/vect/tree-vect.h" + +#define N 1024 +struct S { int a; }; +int c[N], e[N], f[N]; +S d[N]; + +#pragma omp declare simd linear(ref(b, c) : 1) +int +foo (int a, S &b, int &c) +{ + return a + b.a + c; +} + +void +do_main () +{ + int i; + for (i = 0; i < N; i++) + { + c[i] = i; + d[i].a = 2 * i; + f[i] = 3 * i; + } + #pragma omp simd + for (i = 0; i < N; i++) + e[i] = foo (c[i], d[i], f[i]); + for (i = 0; i < N; i++) + if (e[i] != 6 * i) + __builtin_abort (); +} + +int +main () +{ + check_vect (); + return 0; +} --- gcc/testsuite/g++.dg/gomp/declare-simd-6.C.jj 2016-05-24 11:21:39.591853711 +0200 +++ gcc/testsuite/g++.dg/gomp/declare-simd-6.C 2016-05-24 13:33:43.016416143 +0200 @@ -0,0 +1,37 @@ +// PR c++/71257 +// { dg-do compile } +// { dg-options "-fopenmp-simd" } + +struct S { int a; }; +#pragma omp declare simd linear(val(a):2) +int f1 (int &a); +#pragma omp declare simd linear(uval(a):2) +unsigned short f2 (unsigned short &a); +#pragma omp declare simd linear(ref(a):1) +int f3 (long long int &a); +#pragma omp declare simd linear(a:1) +int f4 (int &a); +#pragma omp declare simd linear(val(a)) +int f5 (int a); +#pragma omp declare simd linear(uval(a):2) // { dg-error "modifier applied to non-reference variable" } +int f6 (unsigned short a); +#pragma omp declare simd linear(ref(a):1) // { dg-error "modifier applied to non-reference variable" } +int f7 (unsigned long int a); +#pragma omp declare simd linear(a:1) +int f8 (int a); +#pragma omp declare simd linear(val(a):2) // { dg-error "applied to non-integral non-pointer variable" } +int f9 (S &a); +#pragma omp declare simd linear(uval(a):2) // { dg-error "applied to non-integral non-pointer variable" } +int f10 (S &a); +#pragma omp declare simd linear(ref(a):1) // { dg-bogus "applied to non-integral non-pointer variable" } +int f11 (S &a); +#pragma omp declare simd linear(a:1) // { dg-error "applied to non-integral non-pointer variable" } +int f12 (S &a); +#pragma omp declare simd linear(val(a)) // { dg-error "applied to non-integral non-pointer variable" } +int f13 (S a); +#pragma omp declare simd linear(uval(a):2) // { dg-error "modifier applied to non-reference variable" } +int f14 (S a); +#pragma omp declare simd linear(ref(a):1) // { dg-error "modifier applied to non-reference variable" } +int f15 (S a); +#pragma omp declare simd linear(a:1) // { dg-error "applied to non-integral non-pointer variable" } +int f16 (S a); Jakub