Ping

Richard Sandiford <richard.sandif...@linaro.org> writes:
> Richard Sandiford <richard.sandif...@linaro.org> writes:
>> Eric Botcazou <ebotca...@adacore.com> writes:
>>> [Sorry for missing the previous messages]
>>>
>>>> Thanks.  Just been retesting, and I think I must have forgotten
>>>> to include Ada last time.  It turns out that the patch causes a dg-scan
>>>> regression in gnat.dg/vect17.adb, because we now think that if the
>>>> array RECORD_TYPEs *do* alias in:
>>>> 
>>>>    procedure Add (X, Y : aliased Sarray; R : aliased out Sarray) is
>>>>    begin
>>>>       for I in Sarray'Range loop
>>>>          R(I) := X(I) + Y(I);
>>>>       end loop;
>>>>    end;
>>>> 
>>>> then the dependence distance must be zero.  Eric, does that hold true
>>>> for Ada?  I.e. if X and R (or Y and R) alias, must it be the case that
>>>> X(I) can only alias R(I) and not for example R(I-1) or R(I+1)?
>>>
>>> Yes, I'd think so (even without the artificial RECORD_TYPE around the 
>>> arrays).
>>
>> Good!
>>
>>>> 2017-06-07  Richard Sandiford  <richard.sandif...@linaro.org>
>>>> 
>>>> gcc/testsuite/
>>>>    * gnat.dg/vect17.ads (Sarray): Increase range to 1 .. 5.
>>>>    * gnat.dg/vect17.adb (Add): Create a dependence distance of 1
>>>>    when X = R or Y = R.
>>>
>>> I think that you need to modify vect15 and vect16 the same way.
>>
>> Ah, yeah.  And doing that shows that I'd not handled safelen for
>> DDR_COULD_BE_INDEPENDENT_P.  I've fixed that locally.
>>
>> How does this look?  Tested on x86_64-linux-gnu both without the
>> vectoriser changes and with the fixed vectoriser patch.
>
> Here's a version of the patch that handles safelen.  I split the
> handling out into a new function (vect_analyze_possibly_independent_ddr)
> since it was getting too big to do inline.
>
> Tested on aarch64-linux-gnu and x86_64-linux-gnu.  OK to install?
>
> Thanks,
> Richard
>
>
> 2017-07-27  Richard Sandiford  <richard.sandif...@linaro.org>
>
> gcc/
>       * tree-data-ref.h (subscript): Add access_fn field.
>       (data_dependence_relation): Add could_be_independent_p.
>       (SUB_ACCESS_FN, DDR_COULD_BE_INDEPENDENT_P): New macros.
>       (same_access_functions): Move to tree-data-ref.c.
>       * tree-data-ref.c (ref_contains_union_access_p): New function.
>       (access_fn_component_p): Likewise.
>       (access_fn_components_comparable_p): Likewise.
>       (dr_analyze_indices): Add a reference to access_fn_component_p.
>       (dump_data_dependence_relation): Use SUB_ACCESS_FN instead of
>       DR_ACCESS_FN.
>       (constant_access_functions): Likewise.
>       (add_other_self_distances): Likewise.
>       (same_access_functions): Likewise.  (Moved from tree-data-ref.h.)
>       (initialize_data_dependence_relation): Use XCNEW and remove
>       explicit zeroing of DDR_REVERSED_P.  Look for a subsequence
>       of access functions that have the same type.  Allow the
>       subsequence to end with different bases in some circumstances.
>       Record the chosen access functions in SUB_ACCESS_FN.
>       (build_classic_dist_vector_1): Replace ddr_a and ddr_b with
>       a_index and b_index.  Use SUB_ACCESS_FN instead of DR_ACCESS_FN.
>       (subscript_dependence_tester_1): Likewise dra and drb.
>       (build_classic_dist_vector): Update calls accordingly.
>       (subscript_dependence_tester): Likewise.
>       * tree-ssa-loop-prefetch.c (determine_loop_nest_reuse): Check
>       DDR_COULD_BE_INDEPENDENT_P.
>       * tree-vectorizer.h (LOOP_REQUIRES_VERSIONING_FOR_ALIAS): Test
>       comp_alias_ddrs instead of may_alias_ddrs.
>       * tree-vect-data-refs.c (vect_analyze_possibly_independent_ddr):
>       New function.
>       (vect_analyze_data_ref_dependence): Use it if
>       DDR_COULD_BE_INDEPENDENT_P, but fall back to using the recorded
>       distance vectors if that fails.
>       (dependence_distance_ge_vf): New function.
>       (vect_prune_runtime_alias_test_list): Use it.  Don't clear
>       LOOP_VINFO_MAY_ALIAS_DDRS.
>
> gcc/testsuite/
>       * gcc.dg/vect/vect-alias-check-3.c: New test.
>       * gcc.dg/vect/vect-alias-check-4.c: Likewise.
>       * gcc.dg/vect/vect-alias-check-5.c: Likewise.
>
> Index: gcc/tree-data-ref.h
> ===================================================================
> --- gcc/tree-data-ref.h       2017-07-27 13:10:29.620045506 +0100
> +++ gcc/tree-data-ref.h       2017-07-27 13:10:33.023912613 +0100
> @@ -260,6 +260,9 @@ struct conflict_function
>  
>  struct subscript
>  {
> +  /* The access functions of the two references.  */
> +  tree access_fn[2];
> +
>    /* A description of the iterations for which the elements are
>       accessed twice.  */
>    conflict_function *conflicting_iterations_in_a;
> @@ -278,6 +281,7 @@ struct subscript
>  
>  typedef struct subscript *subscript_p;
>  
> +#define SUB_ACCESS_FN(SUB, I) (SUB)->access_fn[I]
>  #define SUB_CONFLICTS_IN_A(SUB) (SUB)->conflicting_iterations_in_a
>  #define SUB_CONFLICTS_IN_B(SUB) (SUB)->conflicting_iterations_in_b
>  #define SUB_LAST_CONFLICT(SUB) (SUB)->last_conflict
> @@ -333,6 +337,33 @@ struct data_dependence_relation
>    /* Set to true when the dependence relation is on the same data
>       access.  */
>    bool self_reference_p;
> +
> +  /* True if the dependence described is conservatively correct rather
> +     than exact, and if it is still possible for the accesses to be
> +     conditionally independent.  For example, the a and b references in:
> +
> +       struct s *a, *b;
> +       for (int i = 0; i < n; ++i)
> +         a->f[i] += b->f[i];
> +
> +     conservatively have a distance vector of (0), for the case in which
> +     a == b, but the accesses are independent if a != b.  Similarly,
> +     the a and b references in:
> +
> +       struct s *a, *b;
> +       for (int i = 0; i < n; ++i)
> +         a[0].f[i] += b[i].f[i];
> +
> +     conservatively have a distance vector of (0), but they are indepenent
> +     when a != b + i.  In contrast, the references in:
> +
> +       struct s *a;
> +       for (int i = 0; i < n; ++i)
> +         a->f[i] += a->f[i];
> +
> +     have the same distance vector of (0), but the accesses can never be
> +     independent.  */
> +  bool could_be_independent_p;
>  };
>  
>  typedef struct data_dependence_relation *ddr_p;
> @@ -363,6 +394,7 @@ #define DDR_DIR_VECT(DDR, I) \
>  #define DDR_DIST_VECT(DDR, I) \
>    DDR_DIST_VECTS (DDR)[I]
>  #define DDR_REVERSED_P(DDR) (DDR)->reversed_p
> +#define DDR_COULD_BE_INDEPENDENT_P(DDR) (DDR)->could_be_independent_p
>  
>  
>  bool dr_analyze_innermost (innermost_loop_behavior *, tree, struct loop *);
> @@ -457,22 +489,6 @@ same_data_refs (data_reference_p a, data
>        return false;
>  
>    return true;
> -}
> -
> -/* Return true when the DDR contains two data references that have the
> -   same access functions.  */
> -
> -static inline bool
> -same_access_functions (const struct data_dependence_relation *ddr)
> -{
> -  unsigned i;
> -
> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
> -    if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
> -                       DR_ACCESS_FN (DDR_B (ddr), i)))
> -      return false;
> -
> -  return true;
>  }
>  
>  /* Returns true when all the dependences are computable.  */
> Index: gcc/tree-data-ref.c
> ===================================================================
> --- gcc/tree-data-ref.c       2017-07-27 13:10:29.620045506 +0100
> +++ gcc/tree-data-ref.c       2017-07-27 13:10:33.023912613 +0100
> @@ -124,8 +124,7 @@ Software Foundation; either version 3, o
>  } dependence_stats;
>  
>  static bool subscript_dependence_tester_1 (struct data_dependence_relation *,
> -                                        struct data_reference *,
> -                                        struct data_reference *,
> +                                        unsigned int, unsigned int,
>                                          struct loop *);
>  /* Returns true iff A divides B.  */
>  
> @@ -145,6 +144,21 @@ int_divides_p (int a, int b)
>    return ((b % a) == 0);
>  }
>  
> +/* Return true if reference REF contains a union access.  */
> +
> +static bool
> +ref_contains_union_access_p (tree ref)
> +{
> +  while (handled_component_p (ref))
> +    {
> +      ref = TREE_OPERAND (ref, 0);
> +      if (TREE_CODE (TREE_TYPE (ref)) == UNION_TYPE
> +       || TREE_CODE (TREE_TYPE (ref)) == QUAL_UNION_TYPE)
> +     return true;
> +    }
> +  return false;
> +}
> +
>  
>  
>  /* Dump into FILE all the data references from DATAREFS.  */
> @@ -434,13 +448,14 @@ dump_data_dependence_relation (FILE *out
>        unsigned int i;
>        struct loop *loopi;
>  
> -      for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
> +      subscript *sub;
> +      FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>       {
>         fprintf (outf, "  access_fn_A: ");
> -       print_generic_stmt (outf, DR_ACCESS_FN (dra, i));
> +       print_generic_stmt (outf, SUB_ACCESS_FN (sub, 0));
>         fprintf (outf, "  access_fn_B: ");
> -       print_generic_stmt (outf, DR_ACCESS_FN (drb, i));
> -       dump_subscript (outf, DDR_SUBSCRIPT (ddr, i));
> +       print_generic_stmt (outf, SUB_ACCESS_FN (sub, 1));
> +       dump_subscript (outf, sub);
>       }
>  
>        fprintf (outf, "  inner loop index: %d\n", DDR_INNER_LOOP (ddr));
> @@ -920,6 +935,27 @@ dr_analyze_innermost (innermost_loop_beh
>    return true;
>  }
>  
> +/* Return true if OP is a valid component reference for a DR access
> +   function.  This accepts a subset of what handled_component_p accepts.  */
> +
> +static bool
> +access_fn_component_p (tree op)
> +{
> +  switch (TREE_CODE (op))
> +    {
> +    case REALPART_EXPR:
> +    case IMAGPART_EXPR:
> +    case ARRAY_REF:
> +      return true;
> +
> +    case COMPONENT_REF:
> +      return TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == RECORD_TYPE;
> +
> +    default:
> +      return false;
> +    }
> +}
> +
>  /* Determines the base object and the list of indices of memory reference
>     DR, analyzed in LOOP and instantiated in loop nest NEST.  */
>  
> @@ -957,7 +993,9 @@ dr_analyze_indices (struct data_referenc
>        access_fns.safe_push (integer_one_node);
>      }
>  
> -  /* Analyze access functions of dimensions we know to be independent.  */
> +  /* Analyze access functions of dimensions we know to be independent.
> +     The list of component references handled here should be kept in
> +     sync with access_fn_component_p.  */
>    while (handled_component_p (ref))
>      {
>        if (TREE_CODE (ref) == ARRAY_REF)
> @@ -2148,6 +2186,38 @@ dr_may_alias_p (const struct data_refere
>    return refs_may_alias_p (addr_a, addr_b);
>  }
>  
> +/* REF_A and REF_B both satisfy access_fn_component_p.  Return true
> +   if it is meaningful to compare their associated access functions
> +   when checking for dependencies.  */
> +
> +static bool
> +access_fn_components_comparable_p (tree ref_a, tree ref_b)
> +{
> +  /* Allow pairs of component refs from the following sets:
> +
> +       { REALPART_EXPR, IMAGPART_EXPR }
> +       { COMPONENT_REF }
> +       { ARRAY_REF }.  */
> +  tree_code code_a = TREE_CODE (ref_a);
> +  tree_code code_b = TREE_CODE (ref_b);
> +  if (code_a == IMAGPART_EXPR)
> +    code_a = REALPART_EXPR;
> +  if (code_b == IMAGPART_EXPR)
> +    code_b = REALPART_EXPR;
> +  if (code_a != code_b)
> +    return false;
> +
> +  if (TREE_CODE (ref_a) == COMPONENT_REF)
> +    /* ??? We cannot simply use the type of operand #0 of the refs here as
> +       the Fortran compiler smuggles type punning into COMPONENT_REFs.
> +       Use the DECL_CONTEXT of the FIELD_DECLs instead.  */
> +    return (DECL_CONTEXT (TREE_OPERAND (ref_a, 1))
> +         == DECL_CONTEXT (TREE_OPERAND (ref_b, 1)));
> +
> +  return types_compatible_p (TREE_TYPE (TREE_OPERAND (ref_a, 0)),
> +                          TREE_TYPE (TREE_OPERAND (ref_b, 0)));
> +}
> +
>  /* Initialize a data dependence relation between data accesses A and
>     B.  NB_LOOPS is the number of loops surrounding the references: the
>     size of the classic distance/direction vectors.  */
> @@ -2160,11 +2230,10 @@ initialize_data_dependence_relation (str
>    struct data_dependence_relation *res;
>    unsigned int i;
>  
> -  res = XNEW (struct data_dependence_relation);
> +  res = XCNEW (struct data_dependence_relation);
>    DDR_A (res) = a;
>    DDR_B (res) = b;
>    DDR_LOOP_NEST (res).create (0);
> -  DDR_REVERSED_P (res) = false;
>    DDR_SUBSCRIPTS (res).create (0);
>    DDR_DIR_VECTS (res).create (0);
>    DDR_DIST_VECTS (res).create (0);
> @@ -2182,82 +2251,277 @@ initialize_data_dependence_relation (str
>        return res;
>      }
>  
> -  /* The case where the references are exactly the same.  */
> -  if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
> +  unsigned int num_dimensions_a = DR_NUM_DIMENSIONS (a);
> +  unsigned int num_dimensions_b = DR_NUM_DIMENSIONS (b);
> +  if (num_dimensions_a == 0 || num_dimensions_b == 0)
>      {
> -      if ((loop_nest.exists ()
> -        && !object_address_invariant_in_loop_p (loop_nest[0],
> -                                                DR_BASE_OBJECT (a)))
> -       || DR_NUM_DIMENSIONS (a) == 0)
> +      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
> +      return res;
> +    }
> +
> +  /* For unconstrained bases, the root (highest-indexed) subscript
> +     describes a variation in the base of the original DR_REF rather
> +     than a component access.  We have no type that accurately describes
> +     the new DR_BASE_OBJECT (whose TREE_TYPE describes the type *after*
> +     applying this subscript) so limit the search to the last real
> +     component access.
> +
> +     E.g. for:
> +
> +     void
> +     f (int a[][8], int b[][8])
> +     {
> +       for (int i = 0; i < 8; ++i)
> +         a[i * 2][0] = b[i][0];
> +     }
> +
> +     the a and b accesses have a single ARRAY_REF component reference [0]
> +     but have two subscripts.  */
> +  if (DR_UNCONSTRAINED_BASE (a))
> +    num_dimensions_a -= 1;
> +  if (DR_UNCONSTRAINED_BASE (b))
> +    num_dimensions_b -= 1;
> +
> +  /* These structures describe sequences of component references in
> +     DR_REF (A) and DR_REF (B).  Each component reference is tied to a
> +     specific access function.  */
> +  struct {
> +    /* The sequence starts at DR_ACCESS_FN (A, START_A) of A and
> +       DR_ACCESS_FN (B, START_B) of B (inclusive) and extends to higher
> +       indices.  In C notation, these are the indices of the rightmost
> +       component references; e.g. for a sequence .b.c.d, the start
> +       index is for .d.  */
> +    unsigned int start_a;
> +    unsigned int start_b;
> +
> +    /* The sequence contains LENGTH consecutive access functions from
> +       each DR.  */
> +    unsigned int length;
> +
> +    /* The enclosing objects for the A and B sequences respectively,
> +       i.e. the objects to which DR_ACCESS_FN (A, START_A + LENGTH - 1)
> +       and DR_ACCESS_FN (B, START_B + LENGTH - 1) are applied.  */
> +    tree object_a;
> +    tree object_b;
> +  } full_seq = {}, struct_seq = {};
> +
> +  /* Before each iteration of the loop:
> +
> +     - REF_A is what you get after applying DR_ACCESS_FN (A, INDEX_A) and
> +     - REF_B is what you get after applying DR_ACCESS_FN (B, INDEX_B).  */
> +  unsigned int index_a = 0;
> +  unsigned int index_b = 0;
> +  tree ref_a = DR_REF (a);
> +  tree ref_b = DR_REF (b);
> +
> +  /* Now walk the component references from the final DR_REFs back up to
> +     the enclosing base objects.  Each component reference corresponds
> +     to one access function in the DR, with access function 0 being for
> +     the final DR_REF and the highest-indexed access function being the
> +     one that is applied to the base of the DR.
> +
> +     Look for a sequence of component references whose access functions
> +     are comparable (see access_fn_components_comparable_p).  If more
> +     than one such sequence exists, pick the one nearest the base
> +     (which is the leftmost sequence in C notation).  Store this sequence
> +     in FULL_SEQ.
> +
> +     For example, if we have:
> +
> +     struct foo { struct bar s; ... } (*a)[10], (*b)[10];
> +
> +     A: a[0][i].s.c.d
> +     B: __real b[0][i].s.e[i].f
> +
> +     (where d is the same type as the real component of f) then the access
> +     functions would be:
> +
> +                      0   1   2   3
> +     A:              .d  .c  .s [i]
> +
> +              0   1   2   3   4   5
> +     B:  __real  .f [i]  .e  .s [i]
> +
> +     The A0/B2 column isn't comparable, since .d is a COMPONENT_REF
> +     and [i] is an ARRAY_REF.  However, the A1/B3 column contains two
> +     COMPONENT_REF accesses for struct bar, so is comparable.  Likewise
> +     the A2/B4 column contains two COMPONENT_REF accesses for struct foo,
> +     so is comparable.  The A3/B5 column contains two ARRAY_REFs that
> +     index foo[10] arrays, so is again comparable.  The sequence is
> +     therefore:
> +
> +        A: [1, 3]  (i.e. [i].s.c)
> +        B: [3, 5]  (i.e. [i].s.e)
> +
> +     Also look for sequences of component references whose access
> +     functions are comparable and whose enclosing objects have the same
> +     RECORD_TYPE.  Store this sequence in STRUCT_SEQ.  In the above
> +     example, STRUCT_SEQ would be:
> +
> +        A: [1, 2]  (i.e. s.c)
> +        B: [3, 4]  (i.e. s.e)  */
> +  while (index_a < num_dimensions_a && index_b < num_dimensions_b)
> +    {
> +      /* REF_A and REF_B must be one of the component access types
> +      allowed by dr_analyze_indices.  */
> +      gcc_checking_assert (access_fn_component_p (ref_a));
> +      gcc_checking_assert (access_fn_component_p (ref_b));
> +
> +      /* Get the immediately-enclosing objects for REF_A and REF_B,
> +      i.e. the references *before* applying DR_ACCESS_FN (A, INDEX_A)
> +      and DR_ACCESS_FN (B, INDEX_B).  */
> +      tree object_a = TREE_OPERAND (ref_a, 0);
> +      tree object_b = TREE_OPERAND (ref_b, 0);
> +
> +      tree type_a = TREE_TYPE (object_a);
> +      tree type_b = TREE_TYPE (object_b);
> +      if (access_fn_components_comparable_p (ref_a, ref_b))
> +     {
> +       /* This pair of component accesses is comparable for dependence
> +          analysis, so we can include DR_ACCESS_FN (A, INDEX_A) and
> +          DR_ACCESS_FN (B, INDEX_B) in the sequence.  */
> +       if (full_seq.start_a + full_seq.length != index_a
> +           || full_seq.start_b + full_seq.length != index_b)
> +         {
> +           /* The accesses don't extend the current sequence,
> +              so start a new one here.  */
> +           full_seq.start_a = index_a;
> +           full_seq.start_b = index_b;
> +           full_seq.length = 0;
> +         }
> +
> +       /* Add this pair of references to the sequence.  */
> +       full_seq.length += 1;
> +       full_seq.object_a = object_a;
> +       full_seq.object_b = object_b;
> +
> +       /* If the enclosing objects are structures (and thus have the
> +          same RECORD_TYPE), record the new sequence in STRUCT_SEQ.  */
> +       if (TREE_CODE (type_a) == RECORD_TYPE)
> +         struct_seq = full_seq;
> +
> +       /* Move to the next containing reference for both A and B.  */
> +       ref_a = object_a;
> +       ref_b = object_b;
> +       index_a += 1;
> +       index_b += 1;
> +       continue;
> +     }
> +
> +      /* Try to approach equal type sizes.  */
> +      if (!COMPLETE_TYPE_P (type_a)
> +       || !COMPLETE_TYPE_P (type_b)
> +       || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_a))
> +       || !tree_fits_uhwi_p (TYPE_SIZE_UNIT (type_b)))
> +     break;
> +
> +      unsigned HOST_WIDE_INT size_a = tree_to_uhwi (TYPE_SIZE_UNIT (type_a));
> +      unsigned HOST_WIDE_INT size_b = tree_to_uhwi (TYPE_SIZE_UNIT (type_b));
> +      if (size_a <= size_b)
>       {
> -       DDR_ARE_DEPENDENT (res) = chrec_dont_know;
> -       return res;
> +       index_a += 1;
> +       ref_a = object_a;
> +     }
> +      if (size_b <= size_a)
> +     {
> +       index_b += 1;
> +       ref_b = object_b;
>       }
> -      DDR_AFFINE_P (res) = true;
> -      DDR_ARE_DEPENDENT (res) = NULL_TREE;
> -      DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
> -      DDR_LOOP_NEST (res) = loop_nest;
> -      DDR_INNER_LOOP (res) = 0;
> -      DDR_SELF_REFERENCE (res) = true;
> -      for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
> -       {
> -         struct subscript *subscript;
> -
> -         subscript = XNEW (struct subscript);
> -         SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
> -         SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
> -         SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
> -         SUB_DISTANCE (subscript) = chrec_dont_know;
> -         DDR_SUBSCRIPTS (res).safe_push (subscript);
> -       }
> -      return res;
>      }
>  
> -  /* If the references do not access the same object, we do not know
> -     whether they alias or not.  We do not care about TBAA or alignment
> -     info so we can use OEP_ADDRESS_OF to avoid false negatives.
> -     But the accesses have to use compatible types as otherwise the
> -     built indices would not match.  */
> -  if (!operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 
> OEP_ADDRESS_OF)
> -      || !types_compatible_p (TREE_TYPE (DR_BASE_OBJECT (a)),
> -                           TREE_TYPE (DR_BASE_OBJECT (b))))
> +  /* See whether FULL_SEQ ends at the base and whether the two bases
> +     are equal.  We do not care about TBAA or alignment info so we can
> +     use OEP_ADDRESS_OF to avoid false negatives.  */
> +  tree base_a = DR_BASE_OBJECT (a);
> +  tree base_b = DR_BASE_OBJECT (b);
> +  bool same_base_p = (full_seq.start_a + full_seq.length == num_dimensions_a
> +                   && full_seq.start_b + full_seq.length == num_dimensions_b
> +                   && DR_UNCONSTRAINED_BASE (a) == DR_UNCONSTRAINED_BASE (b)
> +                   && operand_equal_p (base_a, base_b, OEP_ADDRESS_OF)
> +                   && types_compatible_p (TREE_TYPE (base_a),
> +                                          TREE_TYPE (base_b))
> +                   && (!loop_nest.exists ()
> +                       || (object_address_invariant_in_loop_p
> +                           (loop_nest[0], base_a))));
> +
> +  /* If the bases are the same, we can include the base variation too.
> +     E.g. the b accesses in:
> +
> +       for (int i = 0; i < n; ++i)
> +         b[i + 4][0] = b[i][0];
> +
> +     have a definite dependence distance of 4, while for:
> +
> +       for (int i = 0; i < n; ++i)
> +         a[i + 4][0] = b[i][0];
> +
> +     the dependence distance depends on the gap between a and b.
> +
> +     If the bases are different then we can only rely on the sequence
> +     rooted at a structure access, since arrays are allowed to overlap
> +     arbitrarily and change shape arbitrarily.  E.g. we treat this as
> +     valid code:
> +
> +       int a[256];
> +       ...
> +       ((int (*)[4][3]) &a[1])[i][0] += ((int (*)[4][3]) &a[2])[i][0];
> +
> +     where two lvalues with the same int[4][3] type overlap, and where
> +     both lvalues are distinct from the object's declared type.  */
> +  if (same_base_p)
>      {
> -      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
> -      return res;
> +      if (DR_UNCONSTRAINED_BASE (a))
> +     full_seq.length += 1;
>      }
> +  else
> +    full_seq = struct_seq;
>  
> -  /* If the base of the object is not invariant in the loop nest, we cannot
> -     analyze it.  TODO -- in fact, it would suffice to record that there may
> -     be arbitrary dependences in the loops where the base object varies.  */
> -  if ((loop_nest.exists ()
> -       && !object_address_invariant_in_loop_p (loop_nest[0], DR_BASE_OBJECT 
> (a)))
> -      || DR_NUM_DIMENSIONS (a) == 0)
> +  /* Punt if we didn't find a suitable sequence.  */
> +  if (full_seq.length == 0)
>      {
>        DDR_ARE_DEPENDENT (res) = chrec_dont_know;
>        return res;
>      }
>  
> -  /* If the number of dimensions of the access to not agree we can have
> -     a pointer access to a component of the array element type and an
> -     array access while the base-objects are still the same.  Punt.  */
> -  if (DR_NUM_DIMENSIONS (a) != DR_NUM_DIMENSIONS (b))
> +  if (!same_base_p)
>      {
> -      DDR_ARE_DEPENDENT (res) = chrec_dont_know;
> -      return res;
> +      /* Partial overlap is possible for different bases when strict aliasing
> +      is not in effect.  It's also possible if either base involves a union
> +      access; e.g. for:
> +
> +        struct s1 { int a[2]; };
> +        struct s2 { struct s1 b; int c; };
> +        struct s3 { int d; struct s1 e; };
> +        union u { struct s2 f; struct s3 g; } *p, *q;
> +
> +      the s1 at "p->f.b" (base "p->f") partially overlaps the s1 at
> +      "p->g.e" (base "p->g") and might partially overlap the s1 at
> +      "q->g.e" (base "q->g").  */
> +      if (!flag_strict_aliasing
> +       || ref_contains_union_access_p (full_seq.object_a)
> +       || ref_contains_union_access_p (full_seq.object_b))
> +     {
> +       DDR_ARE_DEPENDENT (res) = chrec_dont_know;
> +       return res;
> +     }
> +
> +      DDR_COULD_BE_INDEPENDENT_P (res) = true;
>      }
>  
>    DDR_AFFINE_P (res) = true;
>    DDR_ARE_DEPENDENT (res) = NULL_TREE;
> -  DDR_SUBSCRIPTS (res).create (DR_NUM_DIMENSIONS (a));
> +  DDR_SUBSCRIPTS (res).create (full_seq.length);
>    DDR_LOOP_NEST (res) = loop_nest;
>    DDR_INNER_LOOP (res) = 0;
>    DDR_SELF_REFERENCE (res) = false;
>  
> -  for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
> +  for (i = 0; i < full_seq.length; ++i)
>      {
>        struct subscript *subscript;
>  
>        subscript = XNEW (struct subscript);
> +      SUB_ACCESS_FN (subscript, 0) = DR_ACCESS_FN (a, full_seq.start_a + i);
> +      SUB_ACCESS_FN (subscript, 1) = DR_ACCESS_FN (b, full_seq.start_b + i);
>        SUB_CONFLICTS_IN_A (subscript) = conflict_fn_not_known ();
>        SUB_CONFLICTS_IN_B (subscript) = conflict_fn_not_known ();
>        SUB_LAST_CONFLICT (subscript) = chrec_dont_know;
> @@ -3839,14 +4103,15 @@ add_outer_distances (struct data_depende
>  }
>  
>  /* Return false when fail to represent the data dependence as a
> -   distance vector.  INIT_B is set to true when a component has been
> +   distance vector.  A_INDEX is the index of the first reference
> +   (0 for DDR_A, 1 for DDR_B) and B_INDEX is the index of the
> +   second reference.  INIT_B is set to true when a component has been
>     added to the distance vector DIST_V.  INDEX_CARRY is then set to
>     the index in DIST_V that carries the dependence.  */
>  
>  static bool
>  build_classic_dist_vector_1 (struct data_dependence_relation *ddr,
> -                          struct data_reference *ddr_a,
> -                          struct data_reference *ddr_b,
> +                          unsigned int a_index, unsigned int b_index,
>                            lambda_vector dist_v, bool *init_b,
>                            int *index_carry)
>  {
> @@ -3864,8 +4129,8 @@ build_classic_dist_vector_1 (struct data
>         return false;
>       }
>  
> -      access_fn_a = DR_ACCESS_FN (ddr_a, i);
> -      access_fn_b = DR_ACCESS_FN (ddr_b, i);
> +      access_fn_a = SUB_ACCESS_FN (subscript, a_index);
> +      access_fn_b = SUB_ACCESS_FN (subscript, b_index);
>  
>        if (TREE_CODE (access_fn_a) == POLYNOMIAL_CHREC
>         && TREE_CODE (access_fn_b) == POLYNOMIAL_CHREC)
> @@ -3925,10 +4190,11 @@ build_classic_dist_vector_1 (struct data
>  constant_access_functions (const struct data_dependence_relation *ddr)
>  {
>    unsigned i;
> +  subscript *sub;
>  
> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
> -    if (!evolution_function_is_constant_p (DR_ACCESS_FN (DDR_A (ddr), i))
> -     || !evolution_function_is_constant_p (DR_ACCESS_FN (DDR_B (ddr), i)))
> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
> +    if (!evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 0))
> +     || !evolution_function_is_constant_p (SUB_ACCESS_FN (sub, 1)))
>        return false;
>  
>    return true;
> @@ -3991,10 +4257,11 @@ add_other_self_distances (struct data_de
>    lambda_vector dist_v;
>    unsigned i;
>    int index_carry = DDR_NB_LOOPS (ddr);
> +  subscript *sub;
>  
> -  for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
>      {
> -      tree access_fun = DR_ACCESS_FN (DDR_A (ddr), i);
> +      tree access_fun = SUB_ACCESS_FN (sub, 0);
>  
>        if (TREE_CODE (access_fun) == POLYNOMIAL_CHREC)
>       {
> @@ -4006,7 +4273,7 @@ add_other_self_distances (struct data_de
>                 return;
>               }
>  
> -           access_fun = DR_ACCESS_FN (DDR_A (ddr), 0);
> +           access_fun = SUB_ACCESS_FN (DDR_SUBSCRIPT (ddr, 0), 0);
>  
>             if (TREE_CODE (CHREC_LEFT (access_fun)) == POLYNOMIAL_CHREC)
>               add_multivariate_self_dist (ddr, access_fun);
> @@ -4077,6 +4344,23 @@ add_distance_for_zero_overlaps (struct d
>      }
>  }
>  
> +/* Return true when the DDR contains two data references that have the
> +   same access functions.  */
> +
> +static inline bool
> +same_access_functions (const struct data_dependence_relation *ddr)
> +{
> +  unsigned i;
> +  subscript *sub;
> +
> +  FOR_EACH_VEC_ELT (DDR_SUBSCRIPTS (ddr), i, sub)
> +    if (!eq_evolutions_p (SUB_ACCESS_FN (sub, 0),
> +                       SUB_ACCESS_FN (sub, 1)))
> +      return false;
> +
> +  return true;
> +}
> +
>  /* Compute the classic per loop distance vector.  DDR is the data
>     dependence relation to build a vector from.  Return false when fail
>     to represent the data dependence as a distance vector.  */
> @@ -4108,8 +4392,7 @@ build_classic_dist_vector (struct data_d
>      }
>  
>    dist_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
> -  if (!build_classic_dist_vector_1 (ddr, DDR_A (ddr), DDR_B (ddr),
> -                                 dist_v, &init_b, &index_carry))
> +  if (!build_classic_dist_vector_1 (ddr, 0, 1, dist_v, &init_b, 
> &index_carry))
>      return false;
>  
>    /* Save the distance vector if we initialized one.  */
> @@ -4142,12 +4425,11 @@ build_classic_dist_vector (struct data_d
>        if (!lambda_vector_lexico_pos (dist_v, DDR_NB_LOOPS (ddr)))
>       {
>         lambda_vector save_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
> -       if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr), DDR_A (ddr),
> -                                           loop_nest))
> +       if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
>           return false;
>         compute_subscript_distance (ddr);
> -       if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
> -                                         save_v, &init_b, &index_carry))
> +       if (!build_classic_dist_vector_1 (ddr, 1, 0, save_v, &init_b,
> +                                         &index_carry))
>           return false;
>         save_dist_v (ddr, save_v);
>         DDR_REVERSED_P (ddr) = true;
> @@ -4183,12 +4465,10 @@ build_classic_dist_vector (struct data_d
>           {
>             lambda_vector opposite_v = lambda_vector_new (DDR_NB_LOOPS (ddr));
>  
> -           if (!subscript_dependence_tester_1 (ddr, DDR_B (ddr),
> -                                               DDR_A (ddr), loop_nest))
> +           if (!subscript_dependence_tester_1 (ddr, 1, 0, loop_nest))
>               return false;
>             compute_subscript_distance (ddr);
> -           if (!build_classic_dist_vector_1 (ddr, DDR_B (ddr), DDR_A (ddr),
> -                                             opposite_v, &init_b,
> +           if (!build_classic_dist_vector_1 (ddr, 1, 0, opposite_v, &init_b,
>                                               &index_carry))
>               return false;
>  
> @@ -4267,13 +4547,13 @@ build_classic_dir_vector (struct data_de
>      }
>  }
>  
> -/* Helper function.  Returns true when there is a dependence between
> -   data references DRA and DRB.  */
> +/* Helper function.  Returns true when there is a dependence between the
> +   data references.  A_INDEX is the index of the first reference (0 for
> +   DDR_A, 1 for DDR_B) and B_INDEX is the index of the second reference.  */
>  
>  static bool
>  subscript_dependence_tester_1 (struct data_dependence_relation *ddr,
> -                            struct data_reference *dra,
> -                            struct data_reference *drb,
> +                            unsigned int a_index, unsigned int b_index,
>                              struct loop *loop_nest)
>  {
>    unsigned int i;
> @@ -4285,8 +4565,8 @@ subscript_dependence_tester_1 (struct da
>      {
>        conflict_function *overlaps_a, *overlaps_b;
>  
> -      analyze_overlapping_iterations (DR_ACCESS_FN (dra, i),
> -                                   DR_ACCESS_FN (drb, i),
> +      analyze_overlapping_iterations (SUB_ACCESS_FN (subscript, a_index),
> +                                   SUB_ACCESS_FN (subscript, b_index),
>                                     &overlaps_a, &overlaps_b,
>                                     &last_conflicts, loop_nest);
>  
> @@ -4335,7 +4615,7 @@ subscript_dependence_tester_1 (struct da
>  subscript_dependence_tester (struct data_dependence_relation *ddr,
>                            struct loop *loop_nest)
>  {
> -  if (subscript_dependence_tester_1 (ddr, DDR_A (ddr), DDR_B (ddr), 
> loop_nest))
> +  if (subscript_dependence_tester_1 (ddr, 0, 1, loop_nest))
>      dependence_stats.num_dependence_dependent++;
>  
>    compute_subscript_distance (ddr);
> Index: gcc/tree-ssa-loop-prefetch.c
> ===================================================================
> --- gcc/tree-ssa-loop-prefetch.c      2017-07-27 13:10:29.620045506 +0100
> +++ gcc/tree-ssa-loop-prefetch.c      2017-07-27 13:10:33.023912613 +0100
> @@ -1668,6 +1668,7 @@ determine_loop_nest_reuse (struct loop *
>        refb = (struct mem_ref *) DDR_B (dep)->aux;
>  
>        if (DDR_ARE_DEPENDENT (dep) == chrec_dont_know
> +       || DDR_COULD_BE_INDEPENDENT_P (dep)
>         || DDR_NUM_DIST_VECTS (dep) == 0)
>       {
>         /* If the dependence cannot be analyzed, assume that there might be
> Index: gcc/tree-vectorizer.h
> ===================================================================
> --- gcc/tree-vectorizer.h     2017-07-27 13:10:29.620045506 +0100
> +++ gcc/tree-vectorizer.h     2017-07-27 13:10:33.024912868 +0100
> @@ -358,7 +358,7 @@ #define LOOP_VINFO_ORIG_LOOP_INFO(L)
>  #define LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT(L)    \
>    ((L)->may_misalign_stmts.length () > 0)
>  #define LOOP_REQUIRES_VERSIONING_FOR_ALIAS(L)                \
> -  ((L)->may_alias_ddrs.length () > 0)
> +  ((L)->comp_alias_ddrs.length () > 0)
>  #define LOOP_REQUIRES_VERSIONING_FOR_NITERS(L)               \
>    (LOOP_VINFO_NITERS_ASSUMPTIONS (L))
>  #define LOOP_REQUIRES_VERSIONING(L)                  \
> Index: gcc/tree-vect-data-refs.c
> ===================================================================
> --- gcc/tree-vect-data-refs.c 2017-07-27 13:10:29.620045506 +0100
> +++ gcc/tree-vect-data-refs.c 2017-07-27 13:10:33.024912868 +0100
> @@ -160,6 +160,60 @@ vect_mark_for_runtime_alias_test (ddr_p
>  }
>  
>  
> +/* A subroutine of vect_analyze_data_ref_dependence.  Handle
> +   DDR_COULD_BE_INDEPENDENT_P ddr DDR that has a known set of dependence
> +   distances.  These distances are conservatively correct but they don't
> +   reflect a guaranteed dependence.
> +
> +   Return true if this function does all the work necessary to avoid
> +   an alias or false if the caller should use the dependence distances
> +   to limit the vectorization factor in the usual way.  LOOP_DEPTH is
> +   the depth of the loop described by LOOP_VINFO and the other arguments
> +   are as for vect_analyze_data_ref_dependence.  */
> +
> +static bool
> +vect_analyze_possibly_independent_ddr (data_dependence_relation *ddr,
> +                                    loop_vec_info loop_vinfo,
> +                                    int loop_depth, int *max_vf)
> +{
> +  struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
> +  lambda_vector dist_v;
> +  unsigned int i;
> +  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
> +    {
> +      int dist = dist_v[loop_depth];
> +      if (dist != 0 && !(dist > 0 && DDR_REVERSED_P (ddr)))
> +     {
> +       /* If the user asserted safelen >= DIST consecutive iterations
> +          can be executed concurrently, assume independence.
> +
> +          ??? An alternative would be to add the alias check even
> +          in this case, and vectorize the fallback loop with the
> +          maximum VF set to safelen.  However, if the user has
> +          explicitly given a length, it's less likely that that
> +          would be a win.  */
> +       if (loop->safelen >= 2 && abs_hwi (dist) <= loop->safelen)
> +         {
> +           if (loop->safelen < *max_vf)
> +             *max_vf = loop->safelen;
> +           LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
> +           continue;
> +         }
> +
> +       /* For dependence distances of 2 or more, we have the option
> +          of limiting VF or checking for an alias at runtime.
> +          Prefer to check at runtime if we can, to avoid limiting
> +          the VF unnecessarily when the bases are in fact independent.
> +
> +          Note that the alias checks will be removed if the VF ends up
> +          being small enough.  */
> +       return vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
> +     }
> +    }
> +  return true;
> +}
> +
> +
>  /* Function vect_analyze_data_ref_dependence.
>  
>     Return TRUE if there (might) exist a dependence between a memory-reference
> @@ -305,6 +359,12 @@ vect_analyze_data_ref_dependence (struct
>      }
>  
>    loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
> +
> +  if (DDR_COULD_BE_INDEPENDENT_P (ddr)
> +      && vect_analyze_possibly_independent_ddr (ddr, loop_vinfo,
> +                                             loop_depth, max_vf))
> +    return false;
> +
>    FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
>      {
>        int dist = dist_v[loop_depth];
> @@ -2878,6 +2938,44 @@ vect_no_alias_p (struct data_reference *
>    return false;
>  }
>  
> +/* Return true if the minimum nonzero dependence distance for loop LOOP_DEPTH
> +   in DDR is >= VF.  */
> +
> +static bool
> +dependence_distance_ge_vf (data_dependence_relation *ddr,
> +                        unsigned int loop_depth, unsigned HOST_WIDE_INT vf)
> +{
> +  if (DDR_ARE_DEPENDENT (ddr) != NULL_TREE
> +      || DDR_NUM_DIST_VECTS (ddr) == 0)
> +    return false;
> +
> +  /* If the dependence is exact, we should have limited the VF instead.  */
> +  gcc_checking_assert (DDR_COULD_BE_INDEPENDENT_P (ddr));
> +
> +  unsigned int i;
> +  lambda_vector dist_v;
> +  FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
> +    {
> +      HOST_WIDE_INT dist = dist_v[loop_depth];
> +      if (dist != 0
> +       && !(dist > 0 && DDR_REVERSED_P (ddr))
> +       && (unsigned HOST_WIDE_INT) abs_hwi (dist) < vf)
> +     return false;
> +    }
> +
> +  if (dump_enabled_p ())
> +    {
> +      dump_printf_loc (MSG_NOTE, vect_location,
> +                    "dependence distance between ");
> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
> +      dump_printf (MSG_NOTE,  " and ");
> +      dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
> +      dump_printf (MSG_NOTE,  " is >= VF\n");
> +    }
> +
> +  return true;
> +}
> +
>  /* Function vect_prune_runtime_alias_test_list.
>  
>     Prune a list of ddrs to be tested at run-time by versioning for alias.
> @@ -2908,6 +3006,10 @@ vect_prune_runtime_alias_test_list (loop
>  
>    comp_alias_ddrs.create (may_alias_ddrs.length ());
>  
> +  unsigned int loop_depth
> +    = index_in_loop_nest (LOOP_VINFO_LOOP (loop_vinfo)->num,
> +                       LOOP_VINFO_LOOP_NEST (loop_vinfo));
> +
>    /* First, we collect all data ref pairs for aliasing checks.  */
>    FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
>      {
> @@ -2917,6 +3019,11 @@ vect_prune_runtime_alias_test_list (loop
>        tree segment_length_a, segment_length_b;
>        gimple *stmt_a, *stmt_b;
>  
> +      /* Ignore the alias if the VF we chose ended up being no greater
> +      than the dependence distance.  */
> +      if (dependence_distance_ge_vf (ddr, loop_depth, vect_factor))
> +     continue;
> +
>        dr_a = DDR_A (ddr);
>        stmt_a = DR_STMT (DDR_A (ddr));
>        dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
> @@ -2993,10 +3100,6 @@ vect_prune_runtime_alias_test_list (loop
>        return false;
>      }
>  
> -  /* All alias checks have been resolved at compilation time.  */
> -  if (!comp_alias_ddrs.length ())
> -    LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).truncate (0);
> -
>    return true;
>  }
>  
> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c
> ===================================================================
> --- /dev/null 2017-07-27 10:25:31.671280760 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-3.c    2017-07-27 
> 13:10:33.022912357 +0100
> @@ -0,0 +1,120 @@
> +/* { dg-do compile } */
> +/* { dg-require-effective-target vect_int } */
> +/* { dg-additional-options "--param vect-max-version-for-alias-checks=0 
> -fopenmp-simd" } */
> +
> +/* Intended to be larger than any VF.  */
> +#define GAP 128
> +#define N (GAP * 3)
> +
> +struct s { int x[N + 1]; };
> +struct t { struct s x[N + 1]; };
> +struct u { int x[N + 1]; int y; };
> +struct v { struct s s; };
> +
> +void
> +f1 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->x[i] += b->x[i];
> +}
> +
> +void
> +f2 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[1].x[i] += b[2].x[i];
> +}
> +
> +void
> +f3 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[1].x[i] += b[i].x[i];
> +}
> +
> +void
> +f4 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[i].x[i] += b[i].x[i];
> +}
> +
> +void
> +f5 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->x[i] += b->x[i + 1];
> +}
> +
> +void
> +f6 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[1].x[i] += b[2].x[i + 1];
> +}
> +
> +void
> +f7 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[1].x[i] += b[i].x[i + 1];
> +}
> +
> +void
> +f8 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[i].x[i] += b[i].x[i + 1];
> +}
> +
> +void
> +f9 (struct s *a, struct t *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->x[i] += b->x[1].x[i];
> +}
> +
> +void
> +f10 (struct s *a, struct t *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->x[i] += b->x[i].x[i];
> +}
> +
> +void
> +f11 (struct u *a, struct u *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->x[i] += b->x[i] + b[i].y;
> +}
> +
> +void
> +f12 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < GAP; ++i)
> +    a->x[i + GAP] += b->x[i];
> +}
> +
> +void
> +f13 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < GAP * 2; ++i)
> +    a->x[i + GAP] += b->x[i];
> +}
> +
> +void
> +f14 (struct v *a, struct s *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->s.x[i] = b->x[i];
> +}
> +
> +void
> +f15 (struct s *a, struct s *b)
> +{
> +  #pragma omp simd safelen(N)
> +  for (int i = 0; i < N; ++i)
> +    a->x[i + 1] += b->x[i];
> +}
> +
> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 15 "vect" } } */
> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c
> ===================================================================
> --- /dev/null 2017-07-27 10:25:31.671280760 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-4.c    2017-07-27 
> 13:10:33.022912357 +0100
> @@ -0,0 +1,35 @@
> +/* { dg-do compile } */
> +/* { dg-require-effective-target vect_int } */
> +/* { dg-additional-options "--param vect-max-version-for-alias-checks=0" } */
> +
> +#define N 16
> +
> +struct s1 { int a[N]; };
> +struct s2 { struct s1 b; int c; };
> +struct s3 { int d; struct s1 e; };
> +union u { struct s2 f; struct s3 g; };
> +
> +/* We allow a and b to overlap arbitrarily.  */
> +
> +void
> +f1 (int a[][N], int b[][N])
> +{
> +  for (int i = 0; i < N; ++i)
> +    a[0][i] += b[0][i];
> +}
> +
> +void
> +f2 (union u *a, union u *b)
> +{
> +  for (int i = 0; i < N; ++i)
> +    a->f.b.a[i] += b->g.e.a[i];
> +}
> +
> +void
> +f3 (struct s1 *a, struct s1 *b)
> +{
> +  for (int i = 0; i < N - 1; ++i)
> +    a->a[i + 1] += b->a[i];
> +}
> +
> +/* { dg-final { scan-tree-dump-not "LOOP VECTORIZED" "vect" } } */
> Index: gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c
> ===================================================================
> --- /dev/null 2017-07-27 10:25:31.671280760 +0100
> +++ gcc/testsuite/gcc.dg/vect/vect-alias-check-5.c    2017-07-27 
> 13:10:33.022912357 +0100
> @@ -0,0 +1,19 @@
> +/* { dg-do compile } */
> +/* { dg-require-effective-target vect_int } */
> +
> +/* Intended to be larger than any VF.  */
> +#define GAP 128
> +#define N (GAP * 3)
> +
> +struct s { int x[N]; };
> +
> +void
> +f1 (struct s *a, struct s *b)
> +{
> +  for (int i = 0; i < GAP * 2; ++i)
> +    a->x[i + GAP] += b->x[i];
> +}
> +
> +/* { dg-final { scan-tree-dump-times "consider run-time aliasing" 1 "vect" } 
> } */
> +/* { dg-final { scan-tree-dump-times "improved number of alias checks from 1 
> to 0" 1 "vect" } } */
> +/* { dg-final { scan-tree-dump-times "LOOP VECTORIZED" 1 "vect" } } */

Reply via email to