Hi,

On Tue, 15 Oct 2019, Philipp Tomsich wrote:

> This looks good from our side and has shown useful (combined with the other 2 
> patches) in
> our testing with SPEC2017.
> Given that this looks final: what is the plan for getting this merged?

I'll get to review this v3 version this week.


Ciao,
Michael.

> 
> Thanks,
> Philipp.
> 
> > On 12.09.2019, at 12:23, Feng Xue OS <fxue at os dot amperecomputing dot 
> > com> wrote:
> > 
> > ---
> > diff --git a/gcc/doc/invoke.texi b/gcc/doc/invoke.texi
> > index 1391a562c35..28981fa1048 100644
> > --- a/gcc/doc/invoke.texi
> > +++ b/gcc/doc/invoke.texi
> > @@ -11418,6 +11418,19 @@ The maximum number of branches unswitched in a 
> > single loop.
> > @item lim-expensive
> > The minimum cost of an expensive expression in the loop invariant motion.
> > 
> > +@item max-cond-loop-split-insns
> > +In a loop, if a branch of a conditional statement is selected since certain
> > +loop iteration, any operand that contributes to computation of the 
> > conditional
> > +expression remains unchanged in all following iterations, the statement is
> > +semi-invariant, upon which we can do a kind of loop split transformation.
> > +@option{max-cond-loop-split-insns} controls maximum number of insns to be
> > +added due to loop split on semi-invariant conditional statement.
> > +
> > +@item min-cond-loop-split-prob
> > +When FDO profile information is available, 
> > @option{min-cond-loop-split-prob}
> > +specifies minimum threshold for probability of semi-invariant condition
> > +statement to trigger loop split.
> > +
> > @item iv-consider-all-candidates-bound
> > Bound on number of candidates for induction variables, below which
> > all candidates are considered for each use in induction variable
> > diff --git a/gcc/params.def b/gcc/params.def
> > index 13001a7bb2d..12bc8c26c9e 100644
> > --- a/gcc/params.def
> > +++ b/gcc/params.def
> > @@ -386,6 +386,20 @@ DEFPARAM(PARAM_MAX_UNSWITCH_LEVEL,
> >     "The maximum number of unswitchings in a single loop.",
> >     3, 0, 0)
> > 
> > +/* The maximum number of increased insns due to loop split on 
> > semi-invariant
> > +   condition statement.  */
> > +DEFPARAM(PARAM_MAX_COND_LOOP_SPLIT_INSNS,
> > +   "max-cond-loop-split-insns",
> > +   "The maximum number of insns to be added due to loop split on "
> > +   "semi-invariant condition statement.",
> > +   100, 0, 0)
> > +
> > +DEFPARAM(PARAM_MIN_COND_LOOP_SPLIT_PROB,
> > +   "min-cond-loop-split-prob",
> > +   "The minimum threshold for probability of semi-invariant condition "
> > +   "statement to trigger loop split.",
> > +   30, 0, 100)
> > +
> > /* The maximum number of insns in loop header duplicated by the copy loop
> >    headers pass.  */
> > DEFPARAM(PARAM_MAX_LOOP_HEADER_INSNS,
> > 
> > diff --git a/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C 
> > b/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C
> > new file mode 100644
> > index 00000000000..51f9da22fc7
> > --- /dev/null
> > +++ b/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C
> > @@ -0,0 +1,33 @@
> > +/* { dg-do compile } */
> > +/* { dg-options "-O3 -fdump-tree-lsplit-details" } */
> > +
> > +#include <string>
> > +#include <map>
> > +
> > +using namespace std;
> > +
> > +class  A
> > +{
> > +public:
> > +  bool empty;
> > +  void set (string s);
> > +};
> > +
> > +class  B
> > +{
> > +  map<int, string> m;
> > +  void f ();
> > +};
> > +
> > +extern A *ga;
> > +
> > +void B::f ()
> > +{
> > +  for (map<int, string>::iterator iter = m.begin (); iter != m.end (); 
> > ++iter)
> > +    {
> > +      if (ga->empty)
> > +        ga->set (iter->second);
> > +    }
> > +}
> > +
> > +/* { dg-final { scan-tree-dump-times "split loop 1 at branch" 1 "lsplit" } 
> > } */
> > diff --git a/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c 
> > b/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c
> > new file mode 100644
> > index 00000000000..bbd522d6bcd
> > --- /dev/null
> > +++ b/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c
> > @@ -0,0 +1,23 @@
> > +/* { dg-do compile } */
> > +/* { dg-options "-O3 -fdump-tree-lsplit-details" } */
> > +
> > +__attribute__((pure)) __attribute__((noinline)) int inc (int i)
> > +{
> > +  return i + 1;
> > +}
> > +
> > +extern int do_something (void);
> > +extern int b;
> > +
> > +void test(int n)
> > +{
> > +  int i;
> > +
> > +  for (i = 0; i < n; i = inc (i))
> > +    {
> > +      if (b)
> > +        b = do_something();
> > +    }
> > +}
> > +
> > +/* { dg-final { scan-tree-dump-times "split loop 1 at branch" 1 "lsplit" } 
> > } */
> > diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c
> > index f5f083384bc..e4a1b6d2019 100644
> > --- a/gcc/tree-ssa-loop-split.c
> > +++ b/gcc/tree-ssa-loop-split.c
> > @@ -32,7 +32,10 @@ along with GCC; see the file COPYING3.  If not see
> > #include "tree-ssa-loop.h"
> > #include "tree-ssa-loop-manip.h"
> > #include "tree-into-ssa.h"
> > +#include "tree-inline.h"
> > +#include "tree-cfgcleanup.h"
> > #include "cfgloop.h"
> > +#include "params.h"
> > #include "tree-scalar-evolution.h"
> > #include "gimple-iterator.h"
> > #include "gimple-pretty-print.h"
> > @@ -40,7 +43,9 @@ along with GCC; see the file COPYING3.  If not see
> > #include "gimple-fold.h"
> > #include "gimplify-me.h"
> > 
> > -/* This file implements loop splitting, i.e. transformation of loops like
> > +/* This file implements two kinds of loop splitting.
> > +
> > +   One transformation of loops like:
> > 
> >    for (i = 0; i < 100; i++)
> >      {
> > @@ -612,6 +617,722 @@ split_loop (class loop *loop1, class tree_niter_desc 
> > *niter)
> >   return changed;
> > }
> > 
> > +/* Another transformation of loops like:
> > +
> > +   for (i = INIT (); CHECK (i); i = NEXT ())
> > +     {
> > +       if (expr (a_1, a_2, ..., a_n))  // expr is pure
> > +         a_j = ...;  // change at least one a_j
> > +       else
> > +         S;          // not change any a_j
> > +     }
> > +
> > +   into:
> > +
> > +   for (i = INIT (); CHECK (i); i = NEXT ())
> > +     {
> > +       if (expr (a_1, a_2, ..., a_n))
> > +         a_j = ...;
> > +       else
> > +         {
> > +           S;
> > +           i = NEXT ();
> > +           break;
> > +         }
> > +     }
> > +
> > +   for (; CHECK (i); i = NEXT ())
> > +     {
> > +       S;
> > +     }
> > +
> > +   */
> > +
> > +/* Data structure to hold temporary information during loop split upon
> > +   semi-invariant conditional statement.  */
> > +class split_info {
> > +public:
> > +  /* Array of all basic blocks in a loop, returned by get_loop_body().  */
> > +  basic_block *bbs;
> > +
> > +  /* All memory store/clobber statements in a loop.  */
> > +  auto_vec<gimple *> memory_stores;
> > +
> > +  /* Whether above memory stores vector has been filled.  */
> > +  int need_init;
> > +
> > +  split_info () : bbs (NULL),  need_init (true) { }
> > +
> > +  ~split_info ()
> > +    {
> > +      if (bbs)
> > +   free (bbs);
> > +    }
> > +};
> > +
> > +/* Find all statements with memory-write effect in LOOP, including memory
> > +   store and non-pure function call, and keep those in a vector.  This work
> > +   is only done one time, for the vector should be constant during analysis
> > +   stage of semi-invariant condition.  */
> > +
> > +static void
> > +find_vdef_in_loop (struct loop *loop)
> > +{
> > +  split_info *info = (split_info *) loop->aux;
> > +  gphi *vphi = get_virtual_phi (loop->header);
> > +
> > +  /* Indicate memory store vector has been filled.  */
> > +  info->need_init = false;
> > +
> > +  /* If loop contains memory operation, there must be a virtual PHI node in
> > +     loop header basic block.  */
> > +  if (vphi == NULL)
> > +    return;
> > +
> > +  /* All virtual SSA names inside the loop are connected to be a cyclic
> > +     graph via virtual PHI nodes.  The virtual PHI node in loop header just
> > +     links the first and the last virtual SSA names, by using the last as
> > +     PHI operand to define the first.  */
> > +  const edge latch = loop_latch_edge (loop);
> > +  const tree first = gimple_phi_result (vphi);
> > +  const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch);
> > +
> > +  /* The virtual SSA cyclic graph might consist of only one SSA name, who
> > +     is defined by itself.
> > +
> > +       .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)>
> > +
> > +     This means the loop contains only memory loads, so we can skip it.  */
> > +  if (first == last)
> > +    return;
> > +
> > +  auto_vec<gimple *> other_stores;
> > +  auto_vec<tree> worklist;
> > +  auto_bitmap visited;
> > +
> > +  bitmap_set_bit (visited, SSA_NAME_VERSION (first));
> > +  bitmap_set_bit (visited, SSA_NAME_VERSION (last));
> > +  worklist.safe_push (last);
> > +
> > +  do
> > +    {
> > +      tree vuse = worklist.pop ();
> > +      gimple *stmt = SSA_NAME_DEF_STMT (vuse);
> > +
> > +      /* We mark the first and last SSA names as visited at the beginning,
> > +    and reversely start the process from the last SSA name towards the
> > +    first, which ensures that this do-while will not touch SSA names
> > +    defined outside of the loop.  */
> > +      gcc_assert (gimple_bb (stmt)
> > +             && flow_bb_inside_loop_p (loop, gimple_bb (stmt)));
> > +
> > +      if (gimple_code (stmt) == GIMPLE_PHI)
> > +   {
> > +     gphi *phi = as_a <gphi *> (stmt);
> > +
> > +     for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
> > +       {
> > +         tree arg = gimple_phi_arg_def (stmt, i);
> > +
> > +         if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg)))
> > +           worklist.safe_push (arg);
> > +       }
> > +   }
> > +      else
> > +   {
> > +     tree prev = gimple_vuse (stmt);
> > +
> > +     /* Non-pure call statement is conservatively assumed to impact all
> > +        memory locations.  So place call statements ahead of other memory
> > +        stores in the vector with an idea of of using them as shortcut
> > +        terminators to memory alias analysis.  */
> > +     if (gimple_code (stmt) == GIMPLE_CALL)
> > +       info->memory_stores.safe_push (stmt);
> > +     else
> > +       other_stores.safe_push (stmt);
> > +
> > +     if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev)))
> > +       worklist.safe_push (prev);
> > +   }
> > +    } while (!worklist.is_empty ());
> > +
> > +    info->memory_stores.safe_splice (other_stores);
> > +}
> > +
> > +
> > +/* Given STMT, memory load or pure call statement, check whether it is 
> > impacted
> > +   by some memory store in LOOP, excluding trace starting from SKIP_HEAD 
> > (the
> > +   trace is composed of SKIP_HEAD and those basic block dominated by it, 
> > always
> > +   corresponds to one branch of a conditional statement).  If SKIP_HEAD is
> > +   NULL, all basic blocks of LOOP are checked.  */
> > +
> > +static bool
> > +vuse_semi_invariant_p (struct loop *loop, gimple *stmt,
> > +                  const_basic_block skip_head)
> > +{
> > +  split_info *info = (split_info *) loop->aux;
> > +
> > +  /* Collect memory store/clobber statements if have not do that.  */
> > +  if (info->need_init)
> > +    find_vdef_in_loop (loop);
> > +
> > +  tree rhs = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : 
> > NULL_TREE;
> > +  ao_ref ref;
> > +  gimple *store;
> > +  unsigned i;
> > +
> > +  ao_ref_init (&ref, rhs);
> > +
> > +  FOR_EACH_VEC_ELT (info->memory_stores, i, store)
> > +    {
> > +      /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL.  */
> > +      if (skip_head
> > +     && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head))
> > +   continue;
> > +
> > +      if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref))
> > +   return false;
> > +    }
> > +
> > +  return true;
> > +}
> > +
> > +/* Forward declaration.  */
> > +
> > +static bool
> > +stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
> > +                  const_basic_block skip_head);
> > +
> > +/* Suppose one condition branch, led by SKIP_HEAD, is not executed since
> > +   certain iteration of LOOP, check whether an SSA name (NAME) remains
> > +   unchanged in next interation.  We call this characterisic as semi-
> > +   invariantness.  SKIP_HEAD might be NULL, if so, nothing excluded, all
> > +   basic blocks and control flows in the loop will be considered.  If non-
> > +   NULL, SSA name to check is supposed to be defined before SKIP_HEAD.  */
> > +
> > +static bool
> > +ssa_semi_invariant_p (struct loop *loop, const tree name,
> > +                 const_basic_block skip_head)
> > +{
> > +  gimple *def = SSA_NAME_DEF_STMT (name);
> > +  const_basic_block def_bb = gimple_bb (def);
> > +
> > +  /* An SSA name defined outside a loop is definitely semi-invariant.  */
> > +  if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb))
> > +    return true;
> > +
> > +  if (gimple_code (def) == GIMPLE_PHI)
> > +    {
> > +      /* For PHI node that is not in loop header, its source operands 
> > should
> > +    be defined inside the loop, which are seen as loop variant.  */
> > +      if (def_bb != loop->header || !skip_head)
> > +   return false;
> > +
> > +      const_edge latch = loop_latch_edge (loop);
> > +      tree from = PHI_ARG_DEF_FROM_EDGE (as_a <gphi *> (def), latch);
> > +
> > +      /* A PHI node in loop header contains two source operands, one is
> > +    initial value, the other is the copy of last iteration through loop
> > +    latch, we call it latch value.  From the PHI node to definition
> > +    of latch value, if excluding branch trace from SKIP_HEAD, there
> > +    is no definition of other version of same variable, SSA name defined
> > +    by the PHI node is semi-invariant.
> > +
> > +                         loop entry
> > +                              |     .--- latch ---.
> > +                              |     |             |
> > +                              v     v             |
> > +                  x_1 = PHI <x_0,  x_3>           |
> > +                           |                      |
> > +                           v                      |
> > +              .------- if (cond) -------.         |
> > +              |                         |         |
> > +              |                     [ SKIP ]      |
> > +              |                         |         |
> > +              |                     x_2 = ...     |
> > +              |                         |         |
> > +              '---- T ---->.<---- F ----'         |
> > +                           |                      |
> > +                           v                      |
> > +                  x_3 = PHI <x_1, x_2>            |
> > +                           |                      |
> > +                           '----------------------'
> > +
> > +   Suppose in certain iteration, execution flow in above graph goes
> > +   through true branch, which means that one source value to define
> > +   x_3 in false branch (x2) is skipped, x_3 only comes from x_1, and
> > +   x_1 in next iterations is defined by x_3, we know that x_1 will
> > +   never changed if COND always chooses true branch from then on.  */
> > +
> > +      while (from != name)
> > +   {
> > +     /* A new value comes from a CONSTANT.  */
> > +     if (TREE_CODE (from) != SSA_NAME)
> > +       return false;
> > +
> > +     gimple *stmt = SSA_NAME_DEF_STMT (from);
> > +     const_basic_block bb = gimple_bb (stmt);
> > +
> > +     /* A new value comes from outside of loop.  */
> > +     if (!bb || !flow_bb_inside_loop_p (loop, bb))
> > +       return false;
> > +
> > +     from = NULL_TREE;
> > +
> > +     if (gimple_code (stmt) == GIMPLE_PHI)
> > +       {
> > +         gphi *phi = as_a <gphi *> (stmt);
> > +
> > +         for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i)
> > +           {
> > +             const_edge e = gimple_phi_arg_edge (phi, i);
> > +
> > +             /* Not consider redefinitions in excluded basic blocks.  */
> > +             if (!dominated_by_p (CDI_DOMINATORS, e->src, skip_head))
> > +               {
> > +                 /* There are more than one source operands that can
> > +                    provide value to the SSA name, it is variant.  */
> > +                 if (from)
> > +                   return false;
> > +
> > +                 from = gimple_phi_arg_def (phi, i);
> > +               }
> > +           }
> > +       }
> > +     else if (gimple_code (stmt) == GIMPLE_ASSIGN)
> > +       {
> > +         /* For simple value copy, check its rhs instead.  */
> > +         if (gimple_assign_ssa_name_copy_p (stmt))
> > +           from = gimple_assign_rhs1 (stmt);
> > +       }
> > +
> > +     /* Any other kind of definition is deemed to introduce a new value
> > +        to the SSA name.  */
> > +     if (!from)
> > +       return false;
> > +   }
> > +   return true;
> > +    }
> > +
> > +  /* Value originated from volatile memory load or return of normal (non-
> > +     const/pure) call should not be treated as constant in each iteration. 
> >  */
> > +  if (gimple_has_side_effects (def))
> > +    return false;
> > +
> > +  /* Check if any memory store may kill memory load at this place.  */
> > +  if (gimple_vuse (def) && !vuse_semi_invariant_p (loop, def, skip_head))
> > +    return false;
> > +
> > +  /* Check operands of definition statement of the SSA name.  */
> > +  return stmt_semi_invariant_p (loop, def, skip_head);
> > +}
> > +
> > +/* Check whether STMT is semi-invariant in LOOP, iff all its operands are
> > +   semi-invariant.  Trace composed of basic block SKIP_HEAD and basic 
> > blocks
> > +   dominated by it are excluded from the loop.  */
> > +
> > +static bool
> > +stmt_semi_invariant_p (struct loop *loop, gimple *stmt,
> > +                  const_basic_block skip_head)
> > +{
> > +  ssa_op_iter iter;
> > +  tree use;
> > +
> > +  /* Although operand of a statement might be SSA name, CONSTANT or 
> > VARDECL,
> > +     here we only need to check SSA name operands.  This is because check 
> > on
> > +     VARDECL operands, which involve memory loads, must have been done
> > +     prior to invocation of this function in vuse_semi_invariant_p.  */
> > +  FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
> > +    {
> > +      if (!ssa_semi_invariant_p (loop, use, skip_head))
> > +   return false;
> > +    }
> > +
> > +  return true;
> > +}
> > +
> > +/* Determine when conditional statement never transfers execution to one 
> > of its
> > +   branch, whether we can remove the branch's leading basic block 
> > (BRANCH_BB)
> > +   and those basic blocks dominated by BRANCH_BB.  */
> > +
> > +static bool
> > +branch_removable_p (basic_block branch_bb)
> > +{
> > +  if (single_pred_p (branch_bb))
> > +    return true;
> > +
> > +  edge e;
> > +  edge_iterator ei;
> > +
> > +  FOR_EACH_EDGE (e, ei, branch_bb->preds)
> > +    {
> > +      if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb))
> > +   continue;
> > +
> > +      if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src))
> > +   continue;
> > +
> > +       /* The branch can be reached from opposite branch, or from some
> > +     statement not dominated by the conditional statement.  */
> > +      return false;
> > +    }
> > +
> > +  return true;
> > +}
> > +
> > +/* Find out which branch of a conditional statement (COND) is invariant in 
> > the
> > +   execution context of LOOP.  That is: once the branch is selected in 
> > certain
> > +   iteration of the loop, any operand that contributes to computation of 
> > the
> > +   conditional statement remains unchanged in all following iterations.  */
> > +
> > +static edge
> > +get_cond_invariant_branch (struct loop *loop, gcond *cond)
> > +{
> > +  basic_block cond_bb = gimple_bb (cond);
> > +  basic_block targ_bb[2];
> > +  bool invar[2];
> > +  unsigned invar_checks;
> > +
> > +  for (unsigned i = 0; i < 2; i++)
> > +    {
> > +      targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest;
> > +
> > +      /* One branch directs to loop exit, no need to perform loop split 
> > upon
> > +    this conditional statement.  Firstly, it is trivial if the exit branch
> > +    is semi-invariant, for the statement is just to break loop.  Secondly,
> > +    if the opposite branch is semi-invariant, it means that the statement
> > +    is real loop-invariant, which is covered by loop unswitch.  */
> > +      if (!flow_bb_inside_loop_p (loop, targ_bb[i]))
> > +   return NULL;
> > +    }
> > +
> > +  invar_checks = 0;
> > +
> > +  for (unsigned i = 0; i < 2; i++)
> > +    {
> > +      invar[!i] = false;
> > +
> > +      if (!branch_removable_p (targ_bb[i]))
> > +   continue;
> > +
> > +      /* Given a semi-invariant branch, if its opposite branch dominates
> > +    loop latch, it and its following trace will only be executed in
> > +    final iteration of loop, namely it is not part of repeated body
> > +    of the loop.  Similar to the above case that the branch is loop
> > +    exit, no need to split loop.  */
> > +      if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i]))
> > +   continue;
> > +
> > +      invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]);
> > +      invar_checks++;
> > +    }
> > +
> > +  /* With both branches being invariant (handled by loop unswitch) or
> > +     variant is not what we want.  */
> > +  if (invar[0] ^ !invar[1])
> > +    return NULL;
> > +
> > +  /* Found a real loop-invariant condition, do nothing.  */
> > +  if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL))
> > +    return NULL;
> > +
> > +  return EDGE_SUCC (cond_bb, (unsigned) invar[1]);
> > +}
> > +
> > +/* Calculate increased code size measured by estimated insn number if 
> > applying
> > +   loop split upon certain branch (BRANCH_EDGE) of a conditional 
> > statement.  */
> > +
> > +static int
> > +compute_added_num_insns (struct loop *loop, const_edge branch_edge)
> > +{
> > +  basic_block cond_bb = branch_edge->src;
> > +  unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge;
> > +  basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest;
> > +  basic_block *bbs = ((split_info *) loop->aux)->bbs;
> > +  int num = 0;
> > +
> > +  for (unsigned i = 0; i < loop->num_nodes; i++)
> > +    {
> > +      /* Do no count basic blocks only in opposite branch.  */
> > +      if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb))
> > +   continue;
> > +
> > +      num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights);
> > +    }
> > +
> > +  /* It is unnecessary to evaluate expression of the conditional statement
> > +     in new loop that contains only invariant branch.  This expresion 
> > should
> > +     be constant value (either true or false).  Exclude code size of insns
> > +     that contribute to computation of the expression.  */
> > +
> > +  auto_vec<gimple *> worklist;
> > +  hash_set<gimple *> removed;
> > +  gimple *stmt = last_stmt (cond_bb);
> > +
> > +  worklist.safe_push (stmt);
> > +  removed.add (stmt);
> > +  num -= estimate_num_insns (stmt, &eni_size_weights);
> > +
> > +  do
> > +    {
> > +      ssa_op_iter opnd_iter;
> > +      use_operand_p opnd_p;
> > +
> > +      stmt = worklist.pop ();
> > +      FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE)
> > +   {
> > +     tree opnd = USE_FROM_PTR (opnd_p);
> > +
> > +     if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF (opnd))
> > +       continue;
> > +
> > +     gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd);
> > +     use_operand_p use_p;
> > +     imm_use_iterator use_iter;
> > +
> > +     if (removed.contains (opnd_stmt)
> > +         || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt)))
> > +       continue;
> > +
> > +     FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd)
> > +       {
> > +              gimple *use_stmt = USE_STMT (use_p);
> > +
> > +         if (!is_gimple_debug (use_stmt) && !removed.contains (use_stmt))
> > +           {
> > +             opnd_stmt = NULL;
> > +             break;
> > +           }
> > +       }
> > +
> > +     if (opnd_stmt)
> > +       {
> > +         worklist.safe_push (opnd_stmt);
> > +         removed.add (opnd_stmt);
> > +         num -= estimate_num_insns (opnd_stmt, &eni_size_weights);
> > +       }
> > +   }
> > +    } while (!worklist.is_empty ());
> > +
> > +  gcc_assert (num >= 0);
> > +  return num;
> > +}
> > +
> > +/* Find out loop-invariant branch of a conditional statement (COND) if it 
> > has,
> > +   and check whether it is eligible and profitable to perform loop split 
> > upon
> > +   this branch in LOOP.  */
> > +
> > +static edge
> > +get_cond_branch_to_split_loop (struct loop *loop, gcond *cond)
> > +{
> > +  edge invar_branch = get_cond_invariant_branch (loop, cond);
> > +
> > +  if (!invar_branch)
> > +    return NULL;
> > +
> > +  profile_probability prob = invar_branch->probability;
> > +
> > +  /* When accurate profile information is available, and execution
> > +     frequency of the branch is too low, just let it go.  */
> > +  if (prob.reliable_p ())
> > +    {
> > +      int thres = PARAM_VALUE (PARAM_MIN_COND_LOOP_SPLIT_PROB);
> > +
> > +      if (prob < profile_probability::always ().apply_scale (thres, 100))
> > +   return NULL;
> > +    }
> > +
> > +  /* Add a threshold for increased code size to disable loop split.  */
> > +  if (compute_added_num_insns (loop, invar_branch)
> > +      > PARAM_VALUE (PARAM_MAX_COND_LOOP_SPLIT_INSNS))
> > +    return NULL;
> > +
> > +  return invar_branch;
> > +}
> > +
> > +/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some
> > +   conditional statement, perform loop split transformation illustrated
> > +   as the following graph.
> > +
> > +               .-------T------ if (true) ------F------.
> > +               |                    .---------------. |
> > +               |                    |               | |
> > +               v                    |               v v
> > +          pre-header                |            pre-header
> > +               | .------------.     |                 | .------------.
> > +               | |            |     |                 | |            |
> > +               | v            |     |                 | v            |
> > +             header           |     |               header           |
> > +               |              |     |                 |              |
> > +       [ bool r = cond; ]     |     |                 |              |
> > +               |              |     |                 |              |
> > +      .---- if (r) -----.     |     |        .--- if (true) ---.     |
> > +      |                 |     |     |        |                 |     |
> > +  invariant             |     |     |    invariant             |     |
> > +      |                 |     |     |        |                 |     |
> > +      '---T--->.<---F---'     |     |        '---T--->.<---F---'     |
> > +               |              |    /                  |              |
> > +             stmts            |   /                 stmts            |
> > +               |              |  /                    |              |
> > +              / \             | /                    / \             |
> > +     .-------*   *       [ if (!r) ]        .-------*   *            |
> > +     |           |            |             |           |            |
> > +     |         latch          |             |         latch          |
> > +     |           |            |             |           |            |
> > +     |           '------------'             |           '------------'
> > +     '------------------------. .-----------'
> > +             loop1            | |                   loop2
> > +                              v v
> > +                             exits
> > +
> > +   In the graph, loop1 represents the part derived from original one, and
> > +   loop2 is duplicated using loop_version (), which corresponds to the part
> > +   of original one being splitted out.  In loop1, a new bool temporary (r)
> > +   is introduced to keep value of the condition result.  In original latch
> > +   edge of loop1, we insert a new conditional statement whose value comes
> > +   from previous temporary (r), one of its branch goes back to loop1 header
> > +   as a latch edge, and the other branch goes to loop2 pre-header as an 
> > entry
> > +   edge.  And also in loop2, we abandon the variant branch of the 
> > conditional
> > +   statement candidate by setting a constant bool condition, based on which
> > +   branch is semi-invariant.  */
> > +
> > +static bool
> > +do_split_loop_on_cond (struct loop *loop1, edge invar_branch)
> > +{
> > +  basic_block cond_bb = invar_branch->src;
> > +  bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE);
> > +  gcond *cond = as_a <gcond *> (last_stmt (cond_bb));
> > +
> > +  gcc_assert (cond_bb->loop_father == loop1);
> > +
> > +  if (dump_file && (dump_flags & TDF_DETAILS))
> > +   {
> > +     fprintf (dump_file, "In %s(), split loop %d at branch<%s>, BB %d\n",
> > +         current_function_name (), loop1->num,
> > +         true_invar ? "T" : "F", cond_bb->index);
> > +     print_gimple_stmt (dump_file, cond, 0, TDF_SLIM | TDF_VOPS);
> > +   }
> > +
> > +  initialize_original_copy_tables ();
> > +
> > +  struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL,
> > +                                profile_probability::always (),
> > +                                profile_probability::never (),
> > +                                profile_probability::always (),
> > +                                profile_probability::always (),
> > +                                true);
> > +  if (!loop2)
> > +    {
> > +      free_original_copy_tables ();
> > +      return false;
> > +    }
> > +
> > +  /* Generate a bool type temporary to hold result of the condition.  */
> > +  tree tmp = make_ssa_name (boolean_type_node);
> > +  gimple_stmt_iterator gsi = gsi_last_bb (cond_bb);
> > +  gimple *stmt = gimple_build_assign (tmp,
> > +                                 gimple_cond_code (cond),
> > +                                 gimple_cond_lhs (cond),
> > +                                 gimple_cond_rhs (cond));
> > +
> > +  gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
> > +  gimple_cond_set_condition (cond, EQ_EXPR, tmp, boolean_true_node);
> > +  update_stmt (cond);
> > +
> > +  basic_block cond_bb_copy = get_bb_copy (cond_bb);
> > +  gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy));
> > +
> > +  /* Replace the condition in loop2 with a bool constant to let PassManager
> > +     remove the variant branch after current pass completes.  */
> > +  if (true_invar)
> > +    gimple_cond_make_true (cond_copy);
> > +  else
> > +    gimple_cond_make_false (cond_copy);
> > +
> > +  update_stmt (cond_copy);
> > +
> > +  /* Insert a new conditional statement on latch edge of loop1.  This
> > +     statement acts as a switch to transfer execution from loop1 to loop2,
> > +     when loop1 enters into invariant state.  */
> > +  basic_block latch_bb = split_edge (loop_latch_edge (loop1));
> > +  basic_block break_bb = split_edge (single_pred_edge (latch_bb));
> > +  gimple *break_cond = gimple_build_cond (EQ_EXPR, tmp, boolean_true_node,
> > +                                     NULL_TREE, NULL_TREE);
> > +
> > +  gsi = gsi_last_bb (break_bb);
> > +  gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT);
> > +
> > +  edge to_loop1 = single_succ_edge (break_bb);
> > +  edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, 
> > 0);
> > +
> > +  to_loop1->flags &= ~EDGE_FALLTHRU;
> > +  to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE;
> > +  to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE;
> > +
> > +  update_ssa (TODO_update_ssa);
> > +
> > +  /* Due to introduction of a control flow edge from loop1 latch to loop2
> > +     pre-header, we should update PHIs in loop2 to reflect this connection
> > +     between loop1 and loop2.  */
> > +  connect_loop_phis (loop1, loop2, to_loop2);
> > +
> > +  free_original_copy_tables ();
> > +
> > +  rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1);
> > +
> > +  return true;
> > +}
> > +
> > +/* Traverse all conditional statements in LOOP, to find out a good 
> > candidate
> > +   upon which we can do loop split.  */
> > +
> > +static bool
> > +split_loop_on_cond (struct loop *loop)
> > +{
> > +  split_info *info = new split_info ();
> > +  basic_block *bbs = info->bbs = get_loop_body (loop);
> > +  bool do_split = false;
> > +
> > +  /* Allocate an area to keep temporary info, and associate its address
> > +     with loop aux field.  */
> > +  loop->aux = info;
> > +
> > +  for (unsigned i = 0; i < loop->num_nodes; i++)
> > +    {
> > +      basic_block bb = bbs[i];
> > +
> > +      /* We only consider conditional statement, which be executed at most 
> > once
> > +    in each iteration of the loop.  So skip statements in inner loops.  */
> > +      if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP))
> > +   continue;
> > +
> > +      /* Actually this check is not a must constraint. With it, we can 
> > ensure
> > +    conditional statement will always be executed in each iteration. */
> > +      if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
> > +   continue;
> > +
> > +      gimple *last = last_stmt (bb);
> > +
> > +      if (!last || gimple_code (last) != GIMPLE_COND)
> > +   continue;
> > +
> > +      gcond *cond = as_a <gcond *> (last);
> > +      edge branch_edge = get_cond_branch_to_split_loop (loop, cond);
> > +
> > +      if (branch_edge)
> > +   {
> > +     do_split_loop_on_cond (loop, branch_edge);
> > +     do_split = true;
> > +     break;
> > +   }
> > +    }
> > +
> > +  delete info;
> > +  loop->aux = NULL;
> > +
> > +  return do_split;
> > +}
> > +
> > /* Main entry point.  Perform loop splitting on all suitable loops.  */
> > 
> > static unsigned int
> > @@ -662,6 +1383,32 @@ tree_ssa_split_loops (void)
> >     }
> >     }
> > 
> > +  if (changed)
> > +    {
> > +      cleanup_tree_cfg ();
> > +      changed = false;
> > +    }
> > +
> > +  /* Perform loop splitting for suitable if-conditions in all loops.  */
> > +  FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
> > +    loop->aux = NULL;
> > +
> > +  FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
> > +    {
> > +      if (loop->aux)
> > +        {
> > +     loop_outer (loop)->aux = loop;
> > +     continue;
> > +   }
> > +
> > +      if (!optimize_loop_for_size_p (loop)
> > +     && split_loop_on_cond (loop))
> > +   {
> > +     loop_outer (loop)->aux = loop;
> > +     changed = true;
> > +   }
> > +    }
> > +
> >   FOR_EACH_LOOP (loop, LI_INCLUDE_ROOT)
> >     loop->aux = NULL;
> > 
> > -- 
> > 2.17.1
> > 
> 

Reply via email to