Uros,
The following is the change compared to version 4 after fix all the issues you
raised in the previous email.
Let me know if there is any other issue.
Thanks.
Qing
---
gcc/config/i386/i386.c | 162 +++++++++++++++++----
.../gcc.target/i386/zero-scratch-regs-28.c | 16 ++
.../gcc.target/i386/zero-scratch-regs-29.c | 10 ++
.../gcc.target/i386/zero-scratch-regs-30.c | 11 ++
.../gcc.target/i386/zero-scratch-regs-31.c | 16 ++
5 files changed, 188 insertions(+), 27 deletions(-)
create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-31.c
diff --git a/gcc/config/i386/i386.c b/gcc/config/i386/i386.c
index e66dcf0d587..e6c5001b11e 100644
--- a/gcc/config/i386/i386.c
+++ b/gcc/config/i386/i386.c
@@ -3554,17 +3554,17 @@ ix86_function_value_regno_p (const unsigned int regno)
/* Check whether the register REGNO should be zeroed on X86.
When ALL_SSE_ZEROED is true, all SSE registers have been zeroed
together, no need to zero it again.
- Stack registers (st0-st7) and mm0-mm7 are aliased with each other.
- very hard to be zeroed individually, don't zero individual st or
- mm registgers. */
+ When NEED_ZERO_MMX is true, MMX registers should be cleared. */
static bool
zero_call_used_regno_p (const unsigned int regno,
- bool all_sse_zeroed)
+ bool all_sse_zeroed,
+ bool need_zero_mmx)
{
return GENERAL_REGNO_P (regno)
|| (!all_sse_zeroed && SSE_REGNO_P (regno))
- || MASK_REGNO_P (regno);
+ || MASK_REGNO_P (regno)
+ || (need_zero_mmx && MMX_REGNO_P (regno));
}
/* Return the machine_mode that is used to zero register REGNO. */
@@ -3579,8 +3579,12 @@ zero_call_used_regno_mode (const unsigned int regno)
return SImode;
else if (SSE_REGNO_P (regno))
return V4SFmode;
- else
+ else if (MASK_REGNO_P (regno))
return HImode;
+ else if (MMX_REGNO_P (regno))
+ return V4HImode;
+ else
+ gcc_unreachable ();
}
/* Generate a rtx to zero all vector registers together if possible,
@@ -3603,7 +3607,7 @@ zero_all_vector_registers (HARD_REG_SET
need_zeroed_hardregs)
return gen_avx_vzeroall ();
}
-/* Generate insns to zero all st/mm registers together.
+/* Generate insns to zero all st registers together.
Return true when zeroing instructions are generated.
Assume the number of st registers that are zeroed is num_of_st,
we will emit the following sequence to zero them together:
@@ -3616,23 +3620,49 @@ zero_all_vector_registers (HARD_REG_SET
need_zeroed_hardregs)
...
fstp %%st(0);
i.e., num_of_st fldz followed by num_of_st fstp to clear the stack
- mark stack slots empty. */
+ mark stack slots empty.
+
+ How to compute the num_of_st?
+ There is no direct mapping from stack registers to hard register
+ numbers. If one stack register need to be cleared, we don't know
+ where in the stack the value remains. So, if any stack register
+ need to be cleared, the whole stack should be cleared. However,
+ x87 stack registers that hold the return value should be excluded.
+ x87 returns in the top (two for complex values) register, so
+ num_of_st should be 7/6 when x87 returns, otherwise it will be 8. */
+
static bool
-zero_all_st_mm_registers (HARD_REG_SET need_zeroed_hardregs)
+zero_all_st_registers (HARD_REG_SET need_zeroed_hardregs)
{
unsigned int num_of_st = 0;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
- if (STACK_REGNO_P (regno)
- && TEST_HARD_REG_BIT (need_zeroed_hardregs, regno)
- /* When the corresponding mm register also need to be cleared too. */
- && TEST_HARD_REG_BIT (need_zeroed_hardregs,
- (regno - FIRST_STACK_REG + FIRST_MMX_REG)))
- num_of_st++;
+ if ((STACK_REGNO_P (regno) || MMX_REGNO_P (regno))
+ && TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
+ {
+ num_of_st++;
+ break;
+ }
if (num_of_st == 0)
return false;
+ bool return_with_x87 = false;
+ return_with_x87 = (crtl->return_rtx
+ && (STACK_REG_P (crtl->return_rtx)));
+
+ bool complex_return = false;
+ complex_return = (crtl->return_rtx
+ && COMPLEX_MODE_P (GET_MODE (crtl->return_rtx)));
+
+ if (return_with_x87)
+ if (complex_return)
+ num_of_st = 6;
+ else
+ num_of_st = 7;
+ else
+ num_of_st = 8;
+
rtx st_reg = gen_rtx_REG (XFmode, FIRST_STACK_REG);
for (unsigned int i = 0; i < num_of_st; i++)
emit_insn (gen_rtx_SET (st_reg, CONST0_RTX (XFmode)));
@@ -3646,6 +3676,43 @@ zero_all_st_mm_registers (HARD_REG_SET
need_zeroed_hardregs)
return true;
}
+
+/* When the routine exit with MMX mode, if there is any ST registers
+ need to be zeroed, we should clear all MMX registers except the
+ one that holds the return value RET_MMX_REGNO. */
+static bool
+zero_all_mm_registers (HARD_REG_SET need_zeroed_hardregs,
+ unsigned int ret_mmx_regno)
+{
+ bool need_zero_all_mm = false;
+ for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
+ if (STACK_REGNO_P (regno)
+ && TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
+ {
+ need_zero_all_mm = true;
+ break;
+ }
+
+ if (!need_zero_all_mm)
+ return false;
+
+ rtx zero_mmx = NULL_RTX;
+ machine_mode mode = V4HImode;
+ for (unsigned int regno = FIRST_MMX_REG; regno <= LAST_MMX_REG; regno++)
+ if (regno != ret_mmx_regno)
+ {
+ rtx reg = gen_rtx_REG (mode, regno);
+ if (zero_mmx == NULL_RTX)
+ {
+ zero_mmx = reg;
+ emit_insn (gen_rtx_SET (reg, CONST0_RTX(mode)));
+ }
+ else
+ emit_move_insn (reg, zero_mmx);
+ }
+ return true;
+}
+
/* TARGET_ZERO_CALL_USED_REGS. */
/* Generate a sequence of instructions that zero registers specified by
NEED_ZEROED_HARDREGS. Return the ZEROED_HARDREGS that are actually
@@ -3655,7 +3722,10 @@ ix86_zero_call_used_regs (HARD_REG_SET
need_zeroed_hardregs)
{
HARD_REG_SET zeroed_hardregs;
bool all_sse_zeroed = false;
- bool st_zeroed = false;
+ bool all_st_zeroed = false;
+ bool all_mm_zeroed = false;
+
+ CLEAR_HARD_REG_SET (zeroed_hardregs);
/* first, let's see whether we can zero all vector registers together. */
rtx zero_all_vec_insn = zero_all_vector_registers (need_zeroed_hardregs);
@@ -3665,38 +3735,67 @@ ix86_zero_call_used_regs (HARD_REG_SET
need_zeroed_hardregs)
all_sse_zeroed = true;
}
- /* then, let's see whether we can zero all st+mm registers togeter. */
- st_zeroed = zero_all_st_mm_registers (need_zeroed_hardregs);
+ /* mm/st registers are shared registers set, we should follow the following
+ rules to clear them:
+ MMX exit mode x87 exit mode
+ -------------|----------------------|---------------
+ uses x87 reg | clear all MMX | clear all x87
+ uses MMX reg | clear individual MMX | clear all x87
+ x87 + MMX | clear all MMX | clear all x87
- /* Now, generate instructions to zero all the registers. */
+ first, we should decide which mode (MMX mode or x87 mode) the function
+ exit with. */
- CLEAR_HARD_REG_SET (zeroed_hardregs);
- if (st_zeroed)
- SET_HARD_REG_BIT (zeroed_hardregs, FIRST_STACK_REG);
+ bool exit_with_mmx_mode = (crtl->return_rtx
+ && (MMX_REG_P (crtl->return_rtx)));
+
+ if (!exit_with_mmx_mode)
+ /* x87 exit mode, we should zero all st registers together. */
+ {
+ all_st_zeroed = zero_all_st_registers (need_zeroed_hardregs);
+ if (all_st_zeroed)
+ SET_HARD_REG_BIT (zeroed_hardregs, FIRST_STACK_REG);
+ }
+ else
+ /* MMX exit mode, check whether we can zero all mm registers. */
+ {
+ unsigned int exit_mmx_regno = REGNO (crtl->return_rtx);
+ all_mm_zeroed = zero_all_mm_registers (need_zeroed_hardregs,
+ exit_mmx_regno);
+ if (all_mm_zeroed)
+ for (unsigned int regno = FIRST_MMX_REG; regno <= LAST_MMX_REG; regno++)
+ if (regno != exit_mmx_regno)
+ SET_HARD_REG_BIT (zeroed_hardregs, regno);
+ }
+
+ /* Now, generate instructions to zero all the other registers. */
rtx zero_gpr = NULL_RTX;
rtx zero_vector = NULL_RTX;
rtx zero_mask = NULL_RTX;
+ rtx zero_mmx = NULL_RTX;
for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
{
if (!TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
continue;
- if (!zero_call_used_regno_p (regno, all_sse_zeroed))
+ if (!zero_call_used_regno_p (regno, all_sse_zeroed,
+ exit_with_mmx_mode && !all_mm_zeroed))
continue;
SET_HARD_REG_BIT (zeroed_hardregs, regno);
- rtx reg, tmp;
+ rtx reg, tmp, zero_rtx;
machine_mode mode = zero_call_used_regno_mode (regno);
reg = gen_rtx_REG (mode, regno);
+ zero_rtx = CONST0_RTX (mode);
if (mode == SImode)
if (zero_gpr == NULL_RTX)
{
zero_gpr = reg;
- tmp = gen_rtx_SET (reg, const0_rtx);
+ tmp = gen_rtx_SET (reg, zero_rtx);
if (!TARGET_USE_MOV0 || optimize_insn_for_size_p ())
{
rtx clob = gen_rtx_CLOBBER (VOIDmode,
@@ -3714,7 +3813,7 @@ ix86_zero_call_used_regs (HARD_REG_SET
need_zeroed_hardregs)
if (zero_vector == NULL_RTX)
{
zero_vector = reg;
- tmp = gen_rtx_SET (reg, const0_rtx);
+ tmp = gen_rtx_SET (reg, zero_rtx);
emit_insn (tmp);
}
else
@@ -3723,11 +3822,20 @@ ix86_zero_call_used_regs (HARD_REG_SET
need_zeroed_hardregs)
if (zero_mask == NULL_RTX)
{
zero_mask = reg;
- tmp = gen_rtx_SET (reg, const0_rtx);
+ tmp = gen_rtx_SET (reg, zero_rtx);
emit_insn (tmp);
}
else
emit_move_insn (reg, zero_mask);
+ else if (mode == V4HImode)
+ if (zero_mmx == NULL_RTX)
+ {
+ zero_mmx = reg;
+ tmp = gen_rtx_SET (reg, zero_rtx);
+ emit_insn (tmp);
+ }
+ else
+ emit_move_insn (reg, zero_mmx);
else
gcc_unreachable ();
}
diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
new file mode 100644
index 00000000000..48b1f019a28
--- /dev/null
+++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
@@ -0,0 +1,16 @@
+/* { dg-do compile { target *-*-linux* } } */
+/* { dg-options "-O2 -mmmx -fzero-call-used-regs=all" } */
+/* { dg-require-effective-target ia32 } */
+
+__v2si ret_mmx (void)
+{
+ return (__v2si) { 123, 345 };
+}
+
+/* { dg-final { scan-assembler "pxor\[ \t\]*%mm1, %mm1" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm2" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm3" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm4" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm5" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm6" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm7" } } */
diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
new file mode 100644
index 00000000000..8b5e1cd1602
--- /dev/null
+++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
@@ -0,0 +1,10 @@
+/* { dg-do compile { target *-*-linux* } } */
+/* { dg-options "-O2 -fzero-call-used-regs=all" } */
+
+long double ret_x87 (void)
+{
+ return 1.1L;
+}
+
+/* { dg-final { scan-assembler-times "fldz" 7 } } */
+/* { dg-final { scan-assembler-times "fstp" 7 } } */
diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
new file mode 100644
index 00000000000..e6fb4acf0fa
--- /dev/null
+++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
@@ -0,0 +1,11 @@
+/* { dg-do compile { target *-*-linux* } } */
+/* { dg-options "-O2 -fzero-call-used-regs=all" } */
+/* { dg-require-effective-target lp64} */
+
+_Complex long double ret_x87_cplx (void)
+{
+ return 1.1L + 1.2iL;
+}
+
+/* { dg-final { scan-assembler-times "fldz" 6 } } */
+/* { dg-final { scan-assembler-times "fstp" 6 } } */
diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-31.c
b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-31.c
new file mode 100644
index 00000000000..943508d1d26
--- /dev/null
+++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-31.c
@@ -0,0 +1,16 @@
+/* { dg-do compile { target *-*-linux* } } */
+/* { dg-options "-O2 -mmmx -fzero-call-used-regs=all-arg" } */
+/* { dg-require-effective-target ia32 } */
+
+__v2si ret_mmx (void)
+{
+ return (__v2si) { 123, 345 };
+}
+
+/* { dg-final { scan-assembler "pxor\[ \t\]*%mm1, %mm1" } } */
+/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm2" } } */
+/* { dg-final { scan-assembler-not "movq\[ \t\]*%mm1, %mm3" } } */
+/* { dg-final { scan-assembler-not "movq\[ \t\]*%mm1, %mm4" } } */
+/* { dg-final { scan-assembler-not "movq\[ \t\]*%mm1, %mm5" } } */
+/* { dg-final { scan-assembler-not "movq\[ \t\]*%mm1, %mm6" } } */
+/* { dg-final { scan-assembler-not "movq\[ \t\]*%mm1, %mm7" } } */
--
2.11.0
> On Oct 27, 2020, at 8:55 AM, Qing Zhao via Gcc-patches
> <[email protected]> wrote:
>
>
>
>> On Oct 27, 2020, at 3:09 AM, Uros Bizjak <[email protected]> wrote:
>>
>> On Tue, Oct 27, 2020 at 12:08 AM Qing Zhao <[email protected]
>> <mailto:[email protected]>> wrote:
>>>
>>> Hi, Uros,
>>>
>>> Could you please check the change compared to the previous version for
>>> i386.c as following:
>>> Let me know any issue there.
>>
>> It looks that the combination when the function only touches MMX
>> registers (so, no x87 register is touched) and exits in MMX mode is
>> not handled in the optimal way.
>
> My current code should handle this in the expected way already, as following:
>
>
> /* Then, decide which mode (MMX mode or x87 mode) the function exit with.
> In order to decide whether we need to clear the MMX registers or the
> stack registers. */
>
> bool exit_with_mmx_mode = (crtl->return_rtx
> && (GET_CODE (crtl->return_rtx) == REG)
> && (MMX_REG_P (crtl->return_rtx)));
>
> /* then, let's see whether we can zero all st registers together. */
> if (!exit_with_mmx_mode)
> all_st_zeroed = zero_all_st_registers (need_zeroed_hardregs);
> /* Or should we zero all MMX registers. */
> else
> {
> unsigned int exit_mmx_regno = REGNO (crtl->return_rtx);
> all_mm_zeroed = zero_all_mm_registers (need_zeroed_hardregs,
> exit_mmx_regno);
> }
>
>
> “Zero_all_mm_registers” only zero all MM registers when any ST register need
> to be cleared. Otherwise, it will not clear all MM registers.
> And individual MM registers will be cleared in the regular loop as all other
> registers.
>
>> In this case, MMX registers should be
>> handled in the same way as XMM registers, where only used/arg/all regs
>> can be cleared.
>>
>> MMX exit mode x87 exit mode
>> -------------|----------------------|---------------
>> uses x87 reg | clear all MMX | clear all x87
>> uses MMX reg | clear individual MMX | clear all x87
>> x87 + MMX | clear all MMX | clear all x87
>>
>> IOW, if x87 is used, we don't know where in the stack (or in which MMX
>> "register") the value lies. But when the function uses only MMX
>> registers and exits in MMX mode, we know which register was used, and
>> we *can* access them individually.
>
> I will add the above table to the comment part of the implementation.
>>
>> Also, do we want to handle only arg/used registers?
>
> Yes. Arg/used register handling has been done in middle end. (In
> gcc/function.c) as following:
>
> /* For each of the hard registers, check to see whether we should zero it if:
> 1. it is a call-used-registers;
> and 2. it is not a fixed-registers;
> and 3. it is not live at the return of the routine;
> and 4. it is general registor if gpr_only is true;
> and 5. it is used in the routine if used_only is true;
> and 6. it is a register that passes parameter if arg_only is true;
> */
>
> The register set that i386 backend gets already satisfied all the above
> requirement.
>
>> x87 has no arg
>> registers, so there is no need to clear anything. MMX has 3 argument
>> registers for 32bit targets, and is possible to clear them
>> individually when the function exits in MMX mode.
>
> The above information should already been covered by :
>
> if (arg_only && !FUNCTION_ARG_REGNO_P (regno))
>
> Right?
>
>
>>
>> Please note review comments inline.
>>
>> Uros.
>>
>>> Thanks a lot.
>>>
>>> Qing
>>>
>>> ---
>>> gcc/config/i386/i386.c | 136
>>> ++++++++++++++++++---
>>> .../gcc.target/i386/zero-scratch-regs-28.c | 17 +++
>>> .../gcc.target/i386/zero-scratch-regs-29.c | 11 ++
>>> .../gcc.target/i386/zero-scratch-regs-30.c | 11 ++
>>> 4 files changed, 155 insertions(+), 20 deletions(-)
>>> create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
>>> create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
>>> create mode 100644 gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
>>>
>>> diff --git a/gcc/config/i386/i386.c b/gcc/config/i386/i386.c
>>> index e66dcf0d587..65f778112d9 100644
>>> --- a/gcc/config/i386/i386.c
>>> +++ b/gcc/config/i386/i386.c
>>> @@ -3554,17 +3554,17 @@ ix86_function_value_regno_p (const unsigned int
>>> regno)
>>> /* Check whether the register REGNO should be zeroed on X86.
>>> When ALL_SSE_ZEROED is true, all SSE registers have been zeroed
>>> together, no need to zero it again.
>>> - Stack registers (st0-st7) and mm0-mm7 are aliased with each other.
>>> - very hard to be zeroed individually, don't zero individual st or
>>> - mm registgers. */
>>> + When NEED_ZERO_MMX is true, MMX registers should be cleared. */
>>>
>>> static bool
>>> zero_call_used_regno_p (const unsigned int regno,
>>> - bool all_sse_zeroed)
>>> + bool all_sse_zeroed,
>>> + bool need_zero_mmx)
>>> {
>>> return GENERAL_REGNO_P (regno)
>>> || (!all_sse_zeroed && SSE_REGNO_P (regno))
>>> - || MASK_REGNO_P (regno);
>>> + || MASK_REGNO_P (regno)
>>> + || (need_zero_mmx && MMX_REGNO_P (regno));
>>> }
>>>
>>> /* Return the machine_mode that is used to zero register REGNO. */
>>> @@ -3579,8 +3579,12 @@ zero_call_used_regno_mode (const unsigned int regno)
>>> return SImode;
>>> else if (SSE_REGNO_P (regno))
>>> return V4SFmode;
>>> - else
>>> + else if (MASK_REGNO_P (regno))
>>> return HImode;
>>> + else if (MMX_REGNO_P (regno))
>>> + return DImode;
>>
>> Why DImode instead of V4HImode?
>
> I tried V4HImode, and V2SImode in the beginning, all failed during
> compilation time with “unrecognized inns” error, so, I have to use “DImode”.
>
>> DImode is "natural" for integer
>> registers, and we risk moves from integer to MMX regs.
>
> So, does this mean using DImode is not correct?
>>
>>> + else
>>> + gcc_unreachable ();
>>> }
>>>
>>> /* Generate a rtx to zero all vector registers together if possible,
>>> @@ -3603,7 +3607,7 @@ zero_all_vector_registers (HARD_REG_SET
>>> need_zeroed_hardregs)
>>> return gen_avx_vzeroall ();
>>> }
>>>
>>> -/* Generate insns to zero all st/mm registers together.
>>> +/* Generate insns to zero all st registers together.
>>> Return true when zeroing instructions are generated.
>>> Assume the number of st registers that are zeroed is num_of_st,
>>> we will emit the following sequence to zero them together:
>>> @@ -3616,23 +3620,50 @@ zero_all_vector_registers (HARD_REG_SET
>>> need_zeroed_hardregs)
>>> ...
>>> fstp %%st(0);
>>> i.e., num_of_st fldz followed by num_of_st fstp to clear the stack
>>> - mark stack slots empty. */
>>> + mark stack slots empty.
>>> +
>>> + How to compute the num_of_st?
>>> + There is no direct mapping from stack registers to hard register
>>> + numbers. If one stack register need to be cleared, we don't know
>>> + where in the stack the value remains. So, if any stack register
>>> + need to be cleared, the whole stack should be cleared. However,
>>> + x87 stack registers that hold the return value should be excluded.
>>> + x87 returns in the top (two for complex values) register, so
>>> + num_of_st should be 7/6 when x87 returns, otherwise it will be 8. */
>>> +
>>>
>>> static bool
>>> -zero_all_st_mm_registers (HARD_REG_SET need_zeroed_hardregs)
>>> +zero_all_st_registers (HARD_REG_SET need_zeroed_hardregs)
>>> {
>>> unsigned int num_of_st = 0;
>>> for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
>>> - if (STACK_REGNO_P (regno)
>>> - && TEST_HARD_REG_BIT (need_zeroed_hardregs, regno)
>>> - /* When the corresponding mm register also need to be cleared too. */
>>> - && TEST_HARD_REG_BIT (need_zeroed_hardregs,
>>> - (regno - FIRST_STACK_REG + FIRST_MMX_REG)))
>>> - num_of_st++;
>>> + if ((STACK_REGNO_P (regno) || MMX_REGNO_P (regno))
>>> + && TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
>>> + {
>>> + num_of_st++;
>>> + break;
>>> + }
>>>
>>> if (num_of_st == 0)
>>> return false;
>>>
>>> + bool return_with_x87 = false;
>>> + return_with_x87 = (crtl->return_rtx
>>> + && (GET_CODE (crtl->return_rtx) == REG)
>>> + && (STACK_REG_P (crtl->return_rtx)));
>>
>> STACK_REG_P already checks for REG, no need for separate check.
>
> Okay.
>
>>
>>> +
>>> + bool complex_return = false;
>>> + complex_return = (crtl->return_rtx
>>> + && COMPLEX_MODE_P (GET_MODE (crtl->return_rtx)));
>>> +
>>> + if (return_with_x87)
>>> + if (complex_return)
>>> + num_of_st = 6;
>>> + else
>>> + num_of_st = 7;
>>> + else
>>> + num_of_st = 8;
>>> +
>>> rtx st_reg = gen_rtx_REG (XFmode, FIRST_STACK_REG);
>>> for (unsigned int i = 0; i < num_of_st; i++)
>>> emit_insn (gen_rtx_SET (st_reg, CONST0_RTX (XFmode)));
>>> @@ -3646,6 +3677,43 @@ zero_all_st_mm_registers (HARD_REG_SET
>>> need_zeroed_hardregs)
>>> return true;
>>> }
>>>
>>> +
>>> +/* When the routine exit with MMX mode, if there is any ST registers
>>> + need to be zeroed, we should clear all MMX registers except the
>>> + one that holds the return value RET_MMX_REGNO. */
>>> +static bool
>>> +zero_all_mm_registers (HARD_REG_SET need_zeroed_hardregs,
>>> + unsigned int ret_mmx_regno)
>>> +{
>>> + bool need_zero_all_mm = false;
>>> + for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
>>> + if (STACK_REGNO_P (regno)
>>> + && TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
>>> + {
>>> + need_zero_all_mm = true;
>>> + break;
>>> + }
>>> +
>>> + if (!need_zero_all_mm)
>>> + return false;
>>> +
>>> + rtx zero_mmx = NULL_RTX;
>>> + machine_mode mode = DImode;
>>> + for (unsigned int regno = FIRST_MMX_REG; regno <= LAST_MMX_REG; regno++)
>>> + if (regno != ret_mmx_regno)
>>> + {
>>> + rtx reg = gen_rtx_REG (mode, regno);
>>> + if (zero_mmx == NULL_RTX)
>>> + {
>>> + zero_mmx = reg;
>>> + emit_insn (gen_rtx_SET (reg, const0_rtx));
>>
>> Use CONST0_RTX (mode), and you will be able to use V4HImode instead of
>> DImode.
> Will try this.
>>
>>> + }
>>> + else
>>> + emit_move_insn (reg, zero_mmx);
>>> + }
>>> + return true;
>>> +}
>>> +
>>> /* TARGET_ZERO_CALL_USED_REGS. */
>>> /* Generate a sequence of instructions that zero registers specified by
>>> NEED_ZEROED_HARDREGS. Return the ZEROED_HARDREGS that are actually
>>> @@ -3655,7 +3723,8 @@ ix86_zero_call_used_regs (HARD_REG_SET
>>> need_zeroed_hardregs)
>>> {
>>> HARD_REG_SET zeroed_hardregs;
>>> bool all_sse_zeroed = false;
>>> - bool st_zeroed = false;
>>> + bool all_st_zeroed = false;
>>> + bool all_mm_zeroed = false;
>>>
>>> /* first, let's see whether we can zero all vector registers together. */
>>> rtx zero_all_vec_insn = zero_all_vector_registers (need_zeroed_hardregs);
>>> @@ -3665,24 +3734,42 @@ ix86_zero_call_used_regs (HARD_REG_SET
>>> need_zeroed_hardregs)
>>> all_sse_zeroed = true;
>>> }
>>>
>>> - /* then, let's see whether we can zero all st+mm registers togeter. */
>>> - st_zeroed = zero_all_st_mm_registers (need_zeroed_hardregs);
>>> + /* Then, decide which mode (MMX mode or x87 mode) the function exit with.
>>> + In order to decide whether we need to clear the MMX registers or the
>>> + stack registers. */
>>> +
>>> + bool exit_with_mmx_mode = (crtl->return_rtx
>>> + && (GET_CODE (crtl->return_rtx) == REG)
>>> + && (MMX_REG_P (crtl->return_rtx)));
>>
>> MMX_REG_P also checks for REG internally.
>
> Okay, will update.
>>
>>> +
>>> + /* then, let's see whether we can zero all st registers together. */
>>> + if (!exit_with_mmx_mode)
>>> + all_st_zeroed = zero_all_st_registers (need_zeroed_hardregs);
>>> + /* Or should we zero all MMX registers. */
>>> + else
>>> + {
>>> + unsigned int exit_mmx_regno = REGNO (crtl->return_rtx);
>>> + all_mm_zeroed = zero_all_mm_registers (need_zeroed_hardregs,
>>> + exit_mmx_regno);
>>> + }
>>>
>>> /* Now, generate instructions to zero all the registers. */
>>>
>>> CLEAR_HARD_REG_SET (zeroed_hardregs);
>>> - if (st_zeroed)
>>> + if (all_st_zeroed)
>>> SET_HARD_REG_BIT (zeroed_hardregs, FIRST_STACK_REG);
>>>
>>> rtx zero_gpr = NULL_RTX;
>>> rtx zero_vector = NULL_RTX;
>>> rtx zero_mask = NULL_RTX;
>>> + rtx zero_mmx = NULL_RTX;
>>>
>>> for (unsigned int regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
>>> {
>>> if (!TEST_HARD_REG_BIT (need_zeroed_hardregs, regno))
>>> continue;
>>> - if (!zero_call_used_regno_p (regno, all_sse_zeroed))
>>> + if (!zero_call_used_regno_p (regno, all_sse_zeroed,
>>> + exit_with_mmx_mode && !all_mm_zeroed))
>>> continue;
>>>
>>> SET_HARD_REG_BIT (zeroed_hardregs, regno);
>>> @@ -3728,6 +3815,15 @@ ix86_zero_call_used_regs (HARD_REG_SET
>>> need_zeroed_hardregs)
>>> }
>>> else
>>> emit_move_insn (reg, zero_mask);
>>> + else if (mode == DImode)
>>> + if (zero_mmx == NULL_RTX)
>>> + {
>>> + zero_mmx = reg;
>>> + tmp = gen_rtx_SET (reg, const0_rtx);
>>
>> CONST0_RTX (mode), and you will be able to use V4HImode.
>
> Okay, will try this.
>>
>>> + emit_insn (tmp);
>>> + }
>>> + else
>>> + emit_move_insn (reg, zero_mmx);
>>> else
>>> gcc_unreachable ();
>>> }
>>> diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
>>> b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
>>> new file mode 100644
>>> index 00000000000..61c0bb7a35c
>>> --- /dev/null
>>> +++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-28.c
>>> @@ -0,0 +1,17 @@
>>> +/* { dg-do compile { target *-*-linux* } } */
>>> +/* { dg-options "-O2 -m32 -mmmx -fzero-call-used-regs=all" } */
>>
>> -m32 should not be used explicitly. Use:
>>
>> /* { dg-require-effective-target ia32 } */
>>
>> instead.
>>
>> Also, can we test -fzero-call-used-regs=used and
>> -fzero-call-used-regs=arg with MMX regs? As said above, when function
>> exits in MMX mode, and no x87 is touched, we can clear separate MMX
>> registers.
>
> I will try to add these new testing.
>>
>>> +
>>> +typedef int __v2si __attribute__ ((vector_size (8)));
>>> +
>>> +__v2si ret_mmx (void)
>>> +{
>>> + return (__v2si) { 123, 345 };
>>> +}
>>> +
>>> +/* { dg-final { scan-assembler "pxor\[ \t\]*%mm1, %mm1" } } */
>>> +/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm2" } } */
>>> +/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm3" } } */
>>> +/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm4" } } */
>>> +/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm5" } } */
>>> +/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm6" } } */
>>> +/* { dg-final { scan-assembler "movq\[ \t\]*%mm1, %mm7" } } */
>>> diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
>>> b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
>>> new file mode 100644
>>> index 00000000000..db636654e70
>>> --- /dev/null
>>> +++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-29.c
>>> @@ -0,0 +1,11 @@
>>> +/* { dg-do compile { target *-*-linux* } } */
>>> +/* { dg-options "-O2 -m32 -mmmx -fzero-call-used-regs=all" } */
>>
>> No need for "-m32 -mmmx", this test works the same for 32bit and 64bit
>> targets..
>
> Will fix this.
>>
>>> +typedef int __v2si __attribute__ ((vector_size (8)));
>>
>> The above is not needed in this test.
>
> Okay.
>>> +
>>> +long double ret_x87 (void)
>>> +{
>>> + return 1.1L;
>>> +}
>>> +
>>> +/* { dg-final { scan-assembler-times "fldz" 7 } } */
>>> +/* { dg-final { scan-assembler-times "fstp" 7 } } */
>>> diff --git a/gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
>>> b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
>>> new file mode 100644
>>> index 00000000000..7c20b569bfa
>>> --- /dev/null
>>> +++ b/gcc/testsuite/gcc.target/i386/zero-scratch-regs-30.c
>>> @@ -0,0 +1,11 @@
>>> +/* { dg-do compile { target *-*-linux* } } */
>>> +/* { dg-options "-O2 -fzero-call-used-regs=all" } */
>>> +typedef int __v2si __attribute__ ((vector_size (8)));
>>
>> The above line is not needed.
> Okay.
>
>>
>>> +
>>> +_Complex long double ret_x87_cplx (void)
>>> +{
>>> + return 1.1L + 1.2iL;
>>> +}
>>> +
>>> +/* { dg-final { scan-assembler-times "fldz" 6 } } */
>>> +/* { dg-final { scan-assembler-times "fstp" 6 } } */
>>
>> The above applies only to 64bit target. 32bit targets pass complex
>> value via memory and should clear all 8 registers.
>
> Will fix this.
>
> Thanks.
>
> Qing
>