Hello Alex:

On 15/02/24 10:12 pm, Alex Coplan wrote:
> On 15/02/2024 21:24, Ajit Agarwal wrote:
>> Hello Richard:
>>
>> As per your suggestion I have divided the patch into target independent
>> and target dependent for aarch64 target. I kept aarch64-ldp-fusion same
>> and did not change that.
> 
> I'm not sure this was what Richard suggested doing, though.
> He said (from
> https://gcc.gnu.org/pipermail/gcc-patches/2024-February/645545.html):
> 
>> Maybe one way of making the review easier would be to split the aarch64
>> pass into the "target-dependent" and "target-independent" pieces
>> in-place, i.e. keeping everything within aarch64-ldp-fusion.cc, and then
>> (as separate patches) move the target-independent pieces outside
>> config/aarch64.
> 
> but this adds the target-independent parts separately instead of
> splitting it out within config/aarch64 (which I agree should make the
> review easier).

I am sorry I didnt follow. Can you kindly elaborate on this.

Thanks & Regards
Ajit
> 
> Thanks,
> Alex
> 
>>
>> Common infrastructure of load store pair fusion is divided into
>> target independent and target dependent code for rs6000 and aarch64
>> target.
>>
>> Target independent code is structured in the following files.
>> gcc/pair-fusion-base.h
>> gcc/pair-fusion-common.cc
>> gcc/pair-fusion.cc
>>
>> Target independent code is the Generic code with pure virtual
>> function to interface betwwen target independent and dependent
>> code.
>>
>> Thanks & Regards
>> Ajit
>>
>> Target independent code for common infrastructure of load
>> store fusion for rs6000 and aarch64 target.
>>
>> Common infrastructure of load store pair fusion is divided into
>> target independent and target dependent code for rs6000 and aarch64
>> target.
>>
>> Target independent code is structured in the following files.
>> gcc/pair-fusion-base.h
>> gcc/pair-fusion-common.cc
>> gcc/pair-fusion.cc
>>
>> Target independent code is the Generic code with pure virtual
>> function to interface betwwen target independent and dependent
>> code.
>>
>> 2024-02-15  Ajit Kumar Agarwal  <aagar...@linux.ibm.com>
>>
>> gcc/ChangeLog:
>>
>>      * pair-fusion-base.h: Generic header code for load store fusion
>>      that can be shared across different architectures.
>>      * pair-fusion-common.cc: Generic source code for load store
>>      fusion that can be shared across different architectures.
>>      * pair-fusion.cc: Generic implementation of pair_fusion class
>>      defined in pair-fusion-base.h
>>      * Makefile.in: Add new executable pair-fusion.o and
>>      pair-fusion-common.o.
>> ---
>>  gcc/Makefile.in           |    2 +
>>  gcc/pair-fusion-base.h    |  586 ++++++++++++++++++
>>  gcc/pair-fusion-common.cc | 1202 ++++++++++++++++++++++++++++++++++++
>>  gcc/pair-fusion.cc        | 1225 +++++++++++++++++++++++++++++++++++++
>>  4 files changed, 3015 insertions(+)
>>  create mode 100644 gcc/pair-fusion-base.h
>>  create mode 100644 gcc/pair-fusion-common.cc
>>  create mode 100644 gcc/pair-fusion.cc
>>
>> diff --git a/gcc/Makefile.in b/gcc/Makefile.in
>> index a74761b7ab3..df5061ddfe7 100644
>> --- a/gcc/Makefile.in
>> +++ b/gcc/Makefile.in
>> @@ -1563,6 +1563,8 @@ OBJS = \
>>      ipa-strub.o \
>>      ipa.o \
>>      ira.o \
>> +    pair-fusion-common.o \
>> +    pair-fusion.o \
>>      ira-build.o \
>>      ira-costs.o \
>>      ira-conflicts.o \
>> diff --git a/gcc/pair-fusion-base.h b/gcc/pair-fusion-base.h
>> new file mode 100644
>> index 00000000000..fdaf4fd743d
>> --- /dev/null
>> +++ b/gcc/pair-fusion-base.h
>> @@ -0,0 +1,586 @@
>> +// Generic code for Pair MEM  fusion optimization pass.
>> +// Copyright (C) 2023-2024 Free Software Foundation, Inc.
>> +//
>> +// This file is part of GCC.
>> +//
>> +// GCC is free software; you can redistribute it and/or modify it
>> +// under the terms of the GNU General Public License as published by
>> +// the Free Software Foundation; either version 3, or (at your option)
>> +// any later version.
>> +//
>> +// GCC is distributed in the hope that it will be useful, but
>> +// WITHOUT ANY WARRANTY; without even the implied warranty of
>> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
>> +// General Public License for more details.
>> +//
>> +// You should have received a copy of the GNU General Public License
>> +// along with GCC; see the file COPYING3.  If not see
>> +// <http://www.gnu.org/licenses/>.
>> +
>> +#ifndef GCC_PAIR_FUSION_H
>> +#define GCC_PAIR_FUSION_H
>> +#define INCLUDE_ALGORITHM
>> +#define INCLUDE_FUNCTIONAL
>> +#define INCLUDE_LIST
>> +#define INCLUDE_TYPE_TRAITS
>> +#include "config.h"
>> +#include "system.h"
>> +#include "coretypes.h"
>> +#include "backend.h"
>> +#include "rtl.h"
>> +#include "df.h"
>> +#include "rtl-iter.h"
>> +#include "rtl-ssa.h"
>> +#include "cfgcleanup.h"
>> +#include "tree-pass.h"
>> +#include "ordered-hash-map.h"
>> +#include "tree-dfa.h"
>> +#include "fold-const.h"
>> +#include "tree-hash-traits.h"
>> +#include "print-tree.h"
>> +#include "insn-attr.h"
>> +using namespace rtl_ssa;
>> +// We pack these fields (load_p, fpsimd_p, and size) into an integer
>> +// (LFS) which we use as part of the key into the main hash tables.
>> +//
>> +// The idea is that we group candidates together only if they agree on
>> +// the fields below.  Candidates that disagree on any of these
>> +// properties shouldn't be merged together.
>> +struct lfs_fields
>> +{
>> +  bool load_p;
>> +  bool fpsimd_p;
>> +  unsigned size;
>> +};
>> +
>> +using insn_list_t = std::list<insn_info *>;
>> +using insn_iter_t = insn_list_t::iterator;
>> +
>> +// Information about the accesses at a given offset from a particular
>> +// base.  Stored in an access_group, see below.
>> +struct access_record
>> +{
>> +  poly_int64 offset;
>> +  std::list<insn_info *> cand_insns;
>> +  std::list<access_record>::iterator place;
>> +
>> +  access_record (poly_int64 off) : offset (off) {}
>> +};
>> +
>> +// A group of accesses where adjacent accesses could be ldp/stp
>> +// candidates.  The splay tree supports efficient insertion,
>> +// while the list supports efficient iteration.
>> +struct access_group
>> +{
>> +  splay_tree<access_record *> tree;
>> +  std::list<access_record> list;
>> +
>> +  template<typename Alloc>
>> +  inline void track (Alloc node_alloc, poly_int64 offset, insn_info *insn);
>> +};
>> +
>> +// Information about a potential base candidate, used in try_fuse_pair.
>> +// There may be zero, one, or two viable RTL bases for a given pair.
>> +struct base_cand
>> +{
>> +  // DEF is the def of the base register to be used by the pair.
>> +  def_info *def;
>> +
>> +  // FROM_INSN is -1 if the base candidate is already shared by both
>> +  // candidate insns.  Otherwise it holds the index of the insn from
>> +  // which the base originated.
>> +  //
>> +  // In the case that the base is shared, either DEF is already used
>> +  // by both candidate accesses, or both accesses see different versions
>> +  // of the same regno, in which case DEF is the def consumed by the
>> +  // first candidate access.
>> +  int from_insn;
>> +
>> +  // To form a pair, we do so by moving the first access down and the second
>> +  // access up.  To determine where to form the pair, and whether or not
>> +  // it is safe to form the pair, we track instructions which cannot be
>> +  // re-ordered past due to either dataflow or alias hazards.
>> +  //
>> +  // Since we allow changing the base used by an access, the choice of
>> +  // base can change which instructions act as re-ordering hazards for
>> +  // this pair (due to different dataflow).  We store the initial
>> +  // dataflow hazards for this choice of base candidate in HAZARDS.
>> +  //
>> +  // These hazards act as re-ordering barriers to each candidate insn
>> +  // respectively, in program order.
>> +  //
>> +  // Later on, when we take alias analysis into account, we narrow
>> +  // HAZARDS accordingly.
>> +  insn_info *hazards[2];
>> +
>> +  base_cand (def_info *def, int insn)
>> +    : def (def), from_insn (insn), hazards {nullptr, nullptr} {}
>> +
>> +  base_cand (def_info *def) : base_cand (def, -1) {}
>> +
>> +  // Test if this base candidate is viable according to HAZARDS.
>> +  bool viable () const
>> +  {
>> +    return !hazards[0] || !hazards[1] || (*hazards[0] > *hazards[1]);
>> +  }
>> +};
>> +
>> +// Information about an alternate base.  For a def_info D, it may
>> +// instead be expressed as D = BASE + OFFSET.
>> +struct alt_base
>> +{
>> +  def_info *base;
>> +  poly_int64 offset;
>> +};
>> +
>> +// Class that implements a state machine for building the changes needed to 
>> form
>> +// a store pair instruction.  This allows us to easily build the changes in
>> +// program order, as required by rtl-ssa.
>> +struct stp_change_builder
>> +{
>> +  enum class state
>> +  {
>> +    FIRST,
>> +    INSERT,
>> +    FIXUP_USE,
>> +    LAST,
>> +    DONE
>> +  };
>> +
>> +  enum class action
>> +  {
>> +    TOMBSTONE,
>> +    CHANGE,
>> +    INSERT,
>> +    FIXUP_USE
>> +  };
>> +
>> +  struct change
>> +  {
>> +    action type;
>> +    insn_info *insn;
>> +  };
>> +
>> +  bool done () const { return m_state == state::DONE; }
>> +
>> +  stp_change_builder (insn_info *insns[2],
>> +                  insn_info *repurpose,
>> +                  insn_info *dest)
>> +    : m_state (state::FIRST), m_insns { insns[0], insns[1] },
>> +      m_repurpose (repurpose), m_dest (dest), m_use (nullptr) {}
>> +
>> +  change get_change () const
>> +  {
>> +    switch (m_state)
>> +      {
>> +      case state::FIRST:
>> +    return {
>> +      m_insns[0] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
>> +      m_insns[0]
>> +    };
>> +      case state::LAST:
>> +    return {
>> +      m_insns[1] == m_repurpose ? action::CHANGE : action::TOMBSTONE,
>> +      m_insns[1]
>> +    };
>> +      case state::INSERT:
>> +    return { action::INSERT, m_dest };
>> +      case state::FIXUP_USE:
>> +    return { action::FIXUP_USE, m_use->insn () };
>> +      case state::DONE:
>> +    break;
>> +      }
>> +
>> +    gcc_unreachable ();
>> +  }
>> +
>> +  // Transition to the next state.
>> +  void advance ()
>> +  {
>> +    switch (m_state)
>> +      {
>> +      case state::FIRST:
>> +    if (m_repurpose)
>> +      m_state = state::LAST;
>> +    else
>> +      m_state = state::INSERT;
>> +    break;
>> +      case state::INSERT:
>> +      {
>> +    def_info *def = memory_access (m_insns[0]->defs ());
>> +    while (*def->next_def ()->insn () <= *m_dest)
>> +      def = def->next_def ();
>> +
>> +    // Now we know DEF feeds the insertion point for the new stp.
>> +    // Look for any uses of DEF that will consume the new stp.
>> +    gcc_assert (*def->insn () <= *m_dest
>> +                && *def->next_def ()->insn () > *m_dest);
>> +
>> +    auto set = as_a<set_info *> (def);
>> +    for (auto use : set->nondebug_insn_uses ())
>> +      if (*use->insn () > *m_dest)
>> +        {
>> +          m_use = use;
>> +          break;
>> +        }
>> +
>> +    if (m_use)
>> +      m_state = state::FIXUP_USE;
>> +    else
>> +      m_state = state::LAST;
>> +    break;
>> +      }
>> +      case state::FIXUP_USE:
>> +    m_use = m_use->next_nondebug_insn_use ();
>> +    if (!m_use)
>> +      m_state = state::LAST;
>> +    break;
>> +      case state::LAST:
>> +    m_state = state::DONE;
>> +    break;
>> +      case state::DONE:
>> +    gcc_unreachable ();
>> +      }
>> +  }
>> +
>> +private:
>> +  state m_state;
>> +
>> +  // Original candidate stores.
>> +  insn_info *m_insns[2];
>> +
>> +  // If non-null, this is a candidate insn to change into an stp.  
>> Otherwise we
>> +  // are deleting both original insns and inserting a new insn for the stp.
>> +  insn_info *m_repurpose;
>> +
>> +  // Destionation of the stp, it will be placed immediately after m_dest.
>> +  insn_info *m_dest;
>> +
>> +  // Current nondebug use that needs updating due to stp insertion.
>> +  use_info *m_use;
>> +};
>> +
>> +// Virtual base class for load/store walkers used in alias analysis.
>> +struct alias_walker
>> +{
>> +  virtual bool conflict_p (int &budget) const = 0;
>> +  virtual insn_info *insn () const = 0;
>> +  virtual bool valid () const  = 0;
>> +  virtual void advance () = 0;
>> +};
>> +
>> +// State used by the pass for a given basic block.
>> +struct pair_fusion
>> +{
>> +  using def_hash = nofree_ptr_hash<def_info>;
>> +  using expr_key_t = pair_hash<tree_operand_hash, int_hash<int, -1, -2>>;
>> +  using def_key_t = pair_hash<def_hash, int_hash<int, -1, -2>>;
>> +
>> +  // Map of <tree base, LFS> -> access_group.
>> +  ordered_hash_map<expr_key_t, access_group> expr_map;
>> +
>> +  // Map of <RTL-SSA def_info *, LFS> -> access_group.
>> +  ordered_hash_map<def_key_t, access_group> def_map;
>> +
>> +  // Given the def_info for an RTL base register, express it as an offset 
>> from
>> +  // some canonical base instead.
>> +  //
>> +  // Canonicalizing bases in this way allows us to identify adjacent 
>> accesses
>> +  // even if they see different base register defs.
>> +  hash_map<def_hash, alt_base> canon_base_map;
>> +
>> +  static const size_t obstack_alignment = sizeof (void *);
>> +  bb_info *m_bb;
>> +
>> +  pair_fusion (bb_info *bb) : m_bb (bb), m_emitted_tombstone (false)
>> +  {
>> +    obstack_specify_allocation (&m_obstack, OBSTACK_CHUNK_SIZE,
>> +                            obstack_alignment, obstack_chunk_alloc,
>> +                            obstack_chunk_free);
>> +  }
>> +  ~pair_fusion ()
>> +  {
>> +    obstack_free (&m_obstack, nullptr);
>> +
>> +    if (m_emitted_tombstone)
>> +      {
>> +    bitmap_release (&m_tombstone_bitmap);
>> +    bitmap_obstack_release (&m_bitmap_obstack);
>> +      }
>> +  }
>> +  void track_access (insn_info *, bool load, rtx mem);
>> +  void transform ();
>> +  void cleanup_tombstones ();
>> +  virtual void set_multiword_subreg (insn_info *i1, insn_info *i2,
>> +                                 bool load_p) = 0;
>> +  virtual rtx gen_load_store_pair (rtx *pats,  rtx writeback,
>> +                               bool load_p) = 0;
>> +  void merge_pairs (insn_list_t &, insn_list_t &,
>> +                bool load_p, unsigned access_size);
>> +  virtual void transform_for_base (int load_size, access_group &group) = 0;
>> +
>> +  bool try_fuse_pair (bool load_p, unsigned access_size,
>> +                         insn_info *i1, insn_info *i2);
>> +
>> +  bool fuse_pair (bool load_p, unsigned access_size,
>> +              int writeback,
>> +              insn_info *i1, insn_info *i2,
>> +              base_cand &base,
>> +              const insn_range_info &move_range);
>> +
>> +  void do_alias_analysis (insn_info *alias_hazards[4],
>> +                      alias_walker *walkers[4],
>> +                      bool load_p);
>> +
>> +  void track_tombstone (int uid);
>> +
>> +  bool track_via_mem_expr (insn_info *, rtx mem, lfs_fields lfs);
>> +
>> +  virtual bool is_fpsimd_op_p (rtx reg_op, machine_mode mem_mode,
>> +                           bool load_p) = 0;
>> +
>> +  virtual bool pair_operand_mode_ok_p (machine_mode mode) = 0;
>> +  virtual bool pair_trailing_writeback_p () = 0;
>> +  virtual bool pair_check_register_operand (bool load_p, rtx reg_op,
>> +                                        machine_mode mem_mode) = 0;
>> +  virtual int pair_mem_alias_check_limit () = 0;
>> +  virtual bool pair_is_writeback () = 0 ;
>> +  virtual bool pair_mem_ok_policy (rtx first_mem, bool load_p,
>> +                               machine_mode mode) = 0;
>> +  virtual bool fuseable_store_p (insn_info *i1, insn_info *i2) = 0;
>> +  virtual bool fuseable_load_p (insn_info *info) = 0;
>> +
>> +  template<typename Map>
>> +    void traverse_base_map (Map &map);
>> +
>> +private:
>> +  obstack m_obstack;
>> +
>> +  // State for keeping track of tombstone insns emitted for this BB.
>> +  bitmap_obstack m_bitmap_obstack;
>> +  bitmap_head m_tombstone_bitmap;
>> +  bool m_emitted_tombstone;
>> +
>> +  inline splay_tree_node<access_record *> *node_alloc (access_record *);
>> +};
>> +// Track the access INSN at offset OFFSET in this access group.
>> +// ALLOC_NODE is used to allocate splay tree nodes.
>> +template<typename Alloc>
>> +void
>> +access_group::track (Alloc alloc_node, poly_int64 offset, insn_info *insn)
>> +{
>> +  auto insert_before = [&](std::list<access_record>::iterator after)
>> +    {
>> +      auto it = list.emplace (after, offset);
>> +      it->cand_insns.push_back (insn);
>> +      it->place = it;
>> +      return &*it;
>> +    };
>> +
>> +  if (!list.size ())
>> +    {
>> +      auto access = insert_before (list.end ());
>> +      tree.insert_max_node (alloc_node (access));
>> +      return;
>> +    }
>> +
>> +  auto compare = [&](splay_tree_node<access_record *> *node)
>> +    {
>> +      return compare_sizes_for_sort (offset, node->value ()->offset);
>> +    };
>> +  auto result = tree.lookup (compare);
>> +  splay_tree_node<access_record *> *node = tree.root ();
>> +  if (result == 0)
>> +    node->value ()->cand_insns.push_back (insn);
>> +  else
>> +    {
>> +      auto it = node->value ()->place;
>> +      auto after = (result > 0) ? std::next (it) : it;
>> +      auto access = insert_before (after);
>> +      tree.insert_child (node, result > 0, alloc_node (access));
>> +    }
>> +}
>> +
>> +bool
>> +store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget);
>> +bool load_modified_by_store_p (insn_info *load,
>> +                      insn_info *store,
>> +                      int &budget);
>> +
>> +// Implement some common functionality used by both store_walker
>> +// and load_walker.
>> +template<bool reverse>
>> +class def_walker : public alias_walker
>> +{
>> +protected:
>> +  using def_iter_t = typename std::conditional<reverse,
>> +    reverse_def_iterator, def_iterator>::type;
>> +
>> +  static use_info *start_use_chain (def_iter_t &def_iter)
>> +  {
>> +    set_info *set = nullptr;
>> +    for (; *def_iter; def_iter++)
>> +      {
>> +    set = dyn_cast<set_info *> (*def_iter);
>> +    if (!set)
>> +      continue;
>> +
>> +    use_info *use = reverse
>> +      ? set->last_nondebug_insn_use ()
>> +      : set->first_nondebug_insn_use ();
>> +
>> +    if (use)
>> +      return use;
>> +      }
>> +
>> +    return nullptr;
>> +  }
>> +
>> +  def_iter_t def_iter;
>> +  insn_info *limit;
>> +  def_walker (def_info *def, insn_info *limit) :
>> +    def_iter (def), limit (limit) {}
>> +
>> +  virtual bool iter_valid () const { return *def_iter; }
>> +
>> +public:
>> +  insn_info *insn () const override { return (*def_iter)->insn (); }
>> +  void advance () override { def_iter++; }
>> +  bool valid () const override final
>> +  {
>> +    if (!iter_valid ())
>> +      return false;
>> +
>> +    if (reverse)
>> +      return *(insn ()) > *limit;
>> +    else
>> +      return *(insn ()) < *limit;
>> +  }
>> +};
>> +
>> +// alias_walker that iterates over stores.
>> +template<bool reverse, typename InsnPredicate>
>> +class store_walker : public def_walker<reverse>
>> +{
>> +  rtx cand_mem;
>> +  InsnPredicate tombstone_p;
>> +
>> +public:
>> +  store_walker (def_info *mem_def, rtx mem, insn_info *limit_insn,
>> +            InsnPredicate tombstone_fn) :
>> +    def_walker<reverse> (mem_def, limit_insn),
>> +    cand_mem (mem), tombstone_p (tombstone_fn) {}
>> +  bool conflict_p (int &budget) const override final
>> +  {
>> +    if (tombstone_p (this->insn ()))
>> +      return false;
>> +
>> +    return store_modifies_mem_p (cand_mem, this->insn (), budget);
>> +  }
>> +};
>> +
>> +// alias_walker that iterates over loads.
>> +template<bool reverse>
>> +class load_walker : public def_walker<reverse>
>> +{
>> +  using Base = def_walker<reverse>;
>> +  using use_iter_t = typename std::conditional<reverse,
>> +    reverse_use_iterator, nondebug_insn_use_iterator>::type;
>> +
>> +  use_iter_t use_iter;
>> +  insn_info *cand_store;
>> +
>> +  bool iter_valid () const override final { return *use_iter; }
>> +
>> +public:
>> +  void advance () override final
>> +  {
>> +    use_iter++;
>> +    if (*use_iter)
>> +      return;
>> +    this->def_iter++;
>> +    use_iter = Base::start_use_chain (this->def_iter);
>> +  }
>> +
>> +  insn_info *insn () const override final
>> +  {
>> +    return (*use_iter)->insn ();
>> +  }
>> +  bool conflict_p (int &budget) const override final
>> +  {
>> +    return load_modified_by_store_p (insn (), cand_store, budget);
>> +  }
>> +  load_walker (def_info *def, insn_info *store, insn_info *limit_insn)
>> +    : Base (def, limit_insn),
>> +      use_iter (Base::start_use_chain (this->def_iter)),
>> +      cand_store (store) {}
>> +};
>> +
>> +extern insn_info *
>> +try_repurpose_store (insn_info *first,
>> +                 insn_info *second,
>> +                 const insn_range_info &move_range);
>> +
>> +void reset_debug_use (use_info *use);
>> +
>> +extern void
>> +fixup_debug_uses (obstack_watermark &attempt,
>> +              insn_info *insns[2],
>> +              rtx orig_rtl[2],
>> +              insn_info *pair_dst,
>> +              insn_info *trailing_add,
>> +              bool load_p,
>> +              int writeback,
>> +              rtx writeback_effect,
>> +              unsigned base_regno);
>> +
>> +void
>> +fixup_debug_uses_trailing_add (obstack_watermark &attempt,
>> +                           insn_info *pair_dst,
>> +                           insn_info *trailing_add,
>> +                           rtx writeback_effect);
>> +
>> +
>> +extern void
>> +fixup_debug_use (obstack_watermark &attempt,
>> +             use_info *use,
>> +             def_info *def,
>> +             rtx base,
>> +             poly_int64 wb_offset);
>> +
>> +extern insn_info *
>> +find_trailing_add (insn_info *insns[2],
>> +               const insn_range_info &pair_range,
>> +               int initial_writeback,
>> +               rtx *writeback_effect,
>> +               def_info **add_def,
>> +               def_info *base_def,
>> +               poly_int64 initial_offset,
>> +               unsigned access_size);
>> +
>> +rtx drop_writeback (rtx mem);
>> +rtx pair_mem_strip_offset (rtx mem, poly_int64 *offset);
>> +bool any_pre_modify_p (rtx x);
>> +bool any_post_modify_p (rtx x);
>> +int encode_lfs (lfs_fields fields);
>> +extern insn_info * latest_hazard_before (insn_info *insn, rtx *ignore,
>> +                  insn_info *ignore_insn = nullptr);
>> +insn_info * first_hazard_after (insn_info *insn, rtx *ignore);
>> +bool ranges_overlap_p (const insn_range_info &r1, const insn_range_info 
>> &r2);
>> +insn_range_info get_def_range (def_info *def);
>> +insn_range_info def_downwards_move_range (def_info *def);
>> +insn_range_info def_upwards_move_range (def_info *def);
>> +rtx gen_tombstone (void);
>> +rtx filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr);
>> +rtx combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p);
>> +rtx extract_writebacks (bool load_p, rtx pats[2], int changed);
>> +void do_alias_analysis (insn_info *alias_hazards[4],
>> +               alias_walker *walkers[4],
>> +               bool load_p);
>> +int get_viable_bases (insn_info *insns[2],
>> +              vec<base_cand> &base_cands,
>> +              rtx cand_mems[2],
>> +              unsigned access_size,
>> +              bool reversed);
>> +void dump_insn_list (FILE *f, const insn_list_t &l);
>> +#endif
>> diff --git a/gcc/pair-fusion-common.cc b/gcc/pair-fusion-common.cc
>> new file mode 100644
>> index 00000000000..a3b4a5a5154
>> --- /dev/null
>> +++ b/gcc/pair-fusion-common.cc
>> @@ -0,0 +1,1202 @@
>> +// Generic code for Pair MEM  fusion optimization pass.
>> +// Copyright (C) 2023-2024 Free Software Foundation, Inc.
>> +//
>> +// This file is part of GCC.
>> +//
>> +// GCC is free software; you can redistribute it and/or modify it
>> +// under the terms of the GNU General Public License as published by
>> +// the Free Software Foundation; either version 3, or (at your option)
>> +// any later version.
>> +//
>> +// GCC is distributed in the hope that it will be useful, but
>> +// WITHOUT ANY WARRANTY; without even the implied warranty of
>> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
>> +// General Public License for more details.
>> +//
>> +// You should have received a copy of the GNU General Public License
>> +// along with GCC; see the file COPYING3.  If not see
>> +// <http://www.gnu.org/licenses/>.
>> +#include "pair-fusion-base.h"
>> +
>> +static constexpr HOST_WIDE_INT PAIR_MEM_IMM_BITS = 7;
>> +static constexpr HOST_WIDE_INT PAIR_MEM_IMM_SIGN_BIT = (1 << 
>> (PAIR_MEM_IMM_BITS - 1));
>> +static constexpr HOST_WIDE_INT PAIR_MEM_MAX_IMM = PAIR_MEM_IMM_SIGN_BIT - 1;
>> +static constexpr HOST_WIDE_INT PAIR_MEM_MIN_IMM = -PAIR_MEM_MAX_IMM - 1;
>> +// Given a mem MEM, if the address has side effects, return a MEM that 
>> accesses
>> +// the same address but without the side effects.  Otherwise, return
>> +// MEM unchanged.
>> +rtx
>> +drop_writeback (rtx mem)
>> +{
>> +  rtx addr = XEXP (mem, 0);
>> +
>> +  if (!side_effects_p (addr))
>> +    return mem;
>> +
>> +  switch (GET_CODE (addr))
>> +    {
>> +    case PRE_MODIFY:
>> +      addr = XEXP (addr, 1);
>> +      break;
>> +    case POST_MODIFY:
>> +    case POST_INC:
>> +    case POST_DEC:
>> +      addr = XEXP (addr, 0);
>> +      break;
>> +    case PRE_INC:
>> +    case PRE_DEC:
>> +    {
>> +      poly_int64 adjustment = GET_MODE_SIZE (GET_MODE (mem));
>> +      if (GET_CODE (addr) == PRE_DEC)
>> +    adjustment *= -1;
>> +      addr = plus_constant (GET_MODE (addr), XEXP (addr, 0), adjustment);
>> +      break;
>> +    }
>> +    default:
>> +      gcc_unreachable ();
>> +    }
>> +
>> +  return change_address (mem, GET_MODE (mem), addr);
>> +}
>> +
>> +// Convenience wrapper around strip_offset that can also look through
>> +// RTX_AUTOINC addresses.  The interface is like strip_offset except we 
>> take a
>> +// MEM so that we know the mode of the access.
>> +rtx
>> +pair_mem_strip_offset (rtx mem, poly_int64 *offset)
>> +{
>> +  rtx addr = XEXP (mem, 0);
>> +
>> +  switch (GET_CODE (addr))
>> +    {
>> +    case PRE_MODIFY:
>> +    case POST_MODIFY:
>> +      addr = strip_offset (XEXP (addr, 1), offset);
>> +      gcc_checking_assert (REG_P (addr));
>> +      gcc_checking_assert (rtx_equal_p (XEXP (XEXP (mem, 0), 0), addr));
>> +      break;
>> +    case PRE_INC:
>> +    case POST_INC:
>> +      addr = XEXP (addr, 0);
>> +      *offset = GET_MODE_SIZE (GET_MODE (mem));
>> +      gcc_checking_assert (REG_P (addr));
>> +      break;
>> +    case PRE_DEC:
>> +    case POST_DEC:
>> +      addr = XEXP (addr, 0);
>> +      *offset = -GET_MODE_SIZE (GET_MODE (mem));
>> +      gcc_checking_assert (REG_P (addr));
>> +      break;
>> +
>> +    default:
>> +      addr = strip_offset (addr, offset);
>> +    }
>> +
>> +  return addr;
>> +}
>> +
>> +// Return true if X is a PRE_{INC,DEC,MODIFY} rtx.
>> +bool
>> +any_pre_modify_p (rtx x)
>> +{
>> +  const auto code = GET_CODE (x);
>> +  return code == PRE_INC || code == PRE_DEC || code == PRE_MODIFY;
>> +}
>> +
>> +// Return true if X is a POST_{INC,DEC,MODIFY} rtx.
>> +bool
>> +any_post_modify_p (rtx x)
>> +{
>> +  const auto code = GET_CODE (x);
>> +  return code == POST_INC || code == POST_DEC || code == POST_MODIFY;
>> +}
>> +
>> +// Given LFS (load_p, fpsimd_p, size) fields in FIELDS, encode these
>> +// into an integer for use as a hash table key.
>> +int
>> +encode_lfs (lfs_fields fields)
>> +{
>> +  int size_log2 = exact_log2 (fields.size);
>> +  //gcc_checking_assert (size_log2 >= 2 && size_log2 <= 4);
>> +  return ((int)fields.load_p << 3)
>> +    | ((int)fields.fpsimd_p << 2)
>> +    | (size_log2 - 2);
>> +}
>> +
>> +// Dummy predicate that never ignores any insns.
>> +static bool no_ignore (insn_info *) { return false; }
>> +
>> +// Return the latest dataflow hazard before INSN.
>> +//
>> +// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore 
>> for
>> +// dataflow purposes.  This is needed when considering changing the RTL 
>> base of
>> +// an access discovered through a MEM_EXPR base.
>> +//
>> +// If IGNORE_INSN is non-NULL, we should further ignore any hazards arising
>> +// from that insn.
>> +//
>> +// N.B. we ignore any defs/uses of memory here as we deal with that 
>> separately,
>> +// making use of alias disambiguation.
>> +insn_info *
>> +latest_hazard_before (insn_info *insn, rtx *ignore,
>> +                  insn_info *ignore_insn)// = nullptr)
>> +{
>> +  insn_info *result = nullptr;
>> +
>> +  // If the insn can throw then it is at the end of a BB and we can't
>> +  // move it, model this by recording a hazard in the previous insn
>> +  // which will prevent moving the insn up.
>> +  if (cfun->can_throw_non_call_exceptions
>> +      && find_reg_note (insn->rtl (), REG_EH_REGION, NULL_RTX))
>> +    return insn->prev_nondebug_insn ();
>> +
>> +  // Return true if we registered the hazard.
>> +  auto hazard = [&](insn_info *h) -> bool
>> +    {
>> +      gcc_checking_assert (*h < *insn);
>> +      if (h == ignore_insn)
>> +    return false;
>> +
>> +      if (!result || *h > *result)
>> +    result = h;
>> +
>> +      return true;
>> +    };
>> +
>> +  rtx pat = PATTERN (insn->rtl ());
>> +  auto ignore_use = [&](use_info *u)
>> +    {
>> +      if (u->is_mem ())
>> +    return true;
>> +
>> +      return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
>> +    };
>> +
>> +  // Find defs of uses in INSN (RaW).
>> +  for (auto use : insn->uses ())
>> +    if (!ignore_use (use) && use->def ())
>> +      hazard (use->def ()->insn ());
>> +
>> +  // Find previous defs (WaW) or previous uses (WaR) of defs in INSN.
>> +  for (auto def : insn->defs ())
>> +    {
>> +      if (def->is_mem ())
>> +    continue;
>> +
>> +      if (def->prev_def ())
>> +    {
>> +      hazard (def->prev_def ()->insn ()); // WaW
>> +
>> +      auto set = dyn_cast<set_info *> (def->prev_def ());
>> +      if (set && set->has_nondebug_insn_uses ())
>> +        for (auto use : set->reverse_nondebug_insn_uses ())
>> +          if (use->insn () != insn && hazard (use->insn ())) // WaR
>> +            break;
>> +    }
>> +
>> +      if (!HARD_REGISTER_NUM_P (def->regno ()))
>> +    continue;
>> +
>> +      // Also need to check backwards for call clobbers (WaW).
>> +      for (auto call_group : def->ebb ()->call_clobbers ())
>> +    {
>> +      if (!call_group->clobbers (def->resource ()))
>> +        continue;
>> +
>> +      auto clobber_insn = prev_call_clobbers_ignoring (*call_group,
>> +                                                       def->insn (),
>> +                                                       no_ignore);
>> +      if (clobber_insn)
>> +        hazard (clobber_insn);
>> +    }
>> +
>> +    }
>> +
>> +  return result;
>> +}
>> +
>> +// Return the first dataflow hazard after INSN.
>> +//
>> +// If IGNORE is non-NULL, this points to a sub-rtx which we should ignore 
>> for
>> +// dataflow purposes.  This is needed when considering changing the RTL 
>> base of
>> +// an access discovered through a MEM_EXPR base.
>> +//
>> +// N.B. we ignore any defs/uses of memory here as we deal with that 
>> separately,
>> +// making use of alias disambiguation.
>> +insn_info *
>> +first_hazard_after (insn_info *insn, rtx *ignore)
>> +{
>> +  insn_info *result = nullptr;
>> +  auto hazard = [insn, &result](insn_info *h)
>> +    {
>> +      gcc_checking_assert (*h > *insn);
>> +      if (!result || *h < *result)
>> +    result = h;
>> +    };
>> +
>> +  rtx pat = PATTERN (insn->rtl ());
>> +  auto ignore_use = [&](use_info *u)
>> +    {
>> +      if (u->is_mem ())
>> +    return true;
>> +
>> +      return !refers_to_regno_p (u->regno (), u->regno () + 1, pat, ignore);
>> +    };
>> +
>> +  for (auto def : insn->defs ())
>> +    {
>> +      if (def->is_mem ())
>> +    continue;
>> +
>> +      if (def->next_def ())
>> +    hazard (def->next_def ()->insn ()); // WaW
>> +
>> +      auto set = dyn_cast<set_info *> (def);
>> +      if (set && set->has_nondebug_insn_uses ())
>> +    hazard (set->first_nondebug_insn_use ()->insn ()); // RaW
>> +
>> +      if (!HARD_REGISTER_NUM_P (def->regno ()))
>> +    continue;
>> +
>> +      // Also check for call clobbers of this def (WaW).
>> +      for (auto call_group : def->ebb ()->call_clobbers ())
>> +    {
>> +      if (!call_group->clobbers (def->resource ()))
>> +        continue;
>> +
>> +      auto clobber_insn = next_call_clobbers_ignoring (*call_group,
>> +                                                       def->insn (),
>> +                                                       no_ignore);
>> +      if (clobber_insn)
>> +        hazard (clobber_insn);
>> +    }
>> +    }
>> +
>> +  // Find any subsequent defs of uses in INSN (WaR).
>> +  for (auto use : insn->uses ())
>> +    {
>> +      if (ignore_use (use))
>> +    continue;
>> +
>> +      if (use->def ())
>> +    {
>> +      auto def = use->def ()->next_def ();
>> +      if (def && def->insn () == insn)
>> +        def = def->next_def ();
>> +
>> +      if (def)
>> +        hazard (def->insn ());
>> +    }
>> +
>> +      if (!HARD_REGISTER_NUM_P (use->regno ()))
>> +    continue;
>> +
>> +      // Also need to handle call clobbers of our uses (again WaR).
>> +      //
>> +      // See restrict_movement_for_uses_ignoring for why we don't
>> +      // need to check backwards for call clobbers.
>> +      for (auto call_group : use->ebb ()->call_clobbers ())
>> +    {
>> +      if (!call_group->clobbers (use->resource ()))
>> +        continue;
>> +
>> +      auto clobber_insn = next_call_clobbers_ignoring (*call_group,
>> +                                                       use->insn (),
>> +                                                       no_ignore);
>> +      if (clobber_insn)
>> +        hazard (clobber_insn);
>> +    }
>> +    }
>> +
>> +  return result;
>> +}
>> +
>> +// Return true iff R1 and R2 overlap.
>> +bool
>> +ranges_overlap_p (const insn_range_info &r1, const insn_range_info &r2)
>> +{
>> +  // If either range is empty, then their intersection is empty.
>> +  if (!r1 || !r2)
>> +    return false;
>> +
>> +  // When do they not overlap? When one range finishes before the other
>> +  // starts, i.e. (*r1.last < *r2.first || *r2.last < *r1.first).
>> +  // Inverting this, we get the below.
>> +  return *r1.last >= *r2.first && *r2.last >= *r1.first;
>> +}
>> +// Get the range of insns that def feeds.
>> + insn_range_info get_def_range (def_info *def)
>> +{
>> +  insn_info *last = def->next_def ()->insn ()->prev_nondebug_insn ();
>> +  return { def->insn (), last };
>> +}
>> +
>> +// Given a def (of memory), return the downwards range within which we
>> +// can safely move this def.
>> +insn_range_info
>> +def_downwards_move_range (def_info *def)
>> +{
>> +  auto range = get_def_range (def);
>> +
>> +  auto set = dyn_cast<set_info *> (def);
>> +  if (!set || !set->has_any_uses ())
>> +    return range;
>> +
>> +  auto use = set->first_nondebug_insn_use ();
>> +  if (use)
>> +    range = move_earlier_than (range, use->insn ());
>> +
>> +  return range;
>> +}
>> +
>> +// Given a def (of memory), return the upwards range within which we can
>> +// safely move this def.
>> +insn_range_info
>> +def_upwards_move_range (def_info *def)
>> +{
>> +  def_info *prev = def->prev_def ();
>> +  insn_range_info range { prev->insn (), def->insn () };
>> +
>> +  auto set = dyn_cast<set_info *> (prev);
>> +  if (!set || !set->has_any_uses ())
>> +    return range;
>> +
>> +  auto use = set->last_nondebug_insn_use ();
>> +  if (use)
>> +    range = move_later_than (range, use->insn ());
>> +
>> +  return range;
>> +}
>> +
>> +// Generate the RTL pattern for a "tombstone"; used temporarily during this 
>> pass
>> +// to replace stores that are marked for deletion where we can't immediately
>> +// delete the store (since there are uses of mem hanging off the store).
>> +//
>> +// These are deleted at the end of the pass and uses re-parented 
>> appropriately
>> +// at this point.
>> +rtx
>> +gen_tombstone (void)
>> +{
>> +  return gen_rtx_CLOBBER (VOIDmode,
>> +                      gen_rtx_MEM (BLKmode, gen_rtx_SCRATCH (Pmode)));
>> +}
>> +
>> +// Go through the reg notes rooted at NOTE, dropping those that we should 
>> drop,
>> +// and preserving those that we want to keep by prepending them to (and
>> +// returning) RESULT.  EH_REGION is used to make sure we have at most one
>> +// REG_EH_REGION note in the resulting list.  FR_EXPR is used to return any
>> +// REG_FRAME_RELATED_EXPR note we find, as these can need special handling 
>> in
>> +// combine_reg_notes.
>> +rtx
>> +filter_notes (rtx note, rtx result, bool *eh_region, rtx *fr_expr)
>> +{
>> +  for (; note; note = XEXP (note, 1))
>> +    {
>> +      switch (REG_NOTE_KIND (note))
>> +    {
>> +    case REG_DEAD:
>> +      // REG_DEAD notes aren't required to be maintained.
>> +    case REG_EQUAL:
>> +    case REG_EQUIV:
>> +    case REG_UNUSED:
>> +    case REG_NOALIAS:
>> +      // These can all be dropped.  For REG_EQU{AL,IV} they cannot apply to
>> +      // non-single_set insns, and REG_UNUSED is re-computed by RTl-SSA, see
>> +      // rtl-ssa/changes.cc:update_notes.
>> +      //
>> +      // Similarly, REG_NOALIAS cannot apply to a parallel.
>> +    case REG_INC:
>> +      // When we form the pair insn, the reg update is implemented
>> +      // as just another SET in the parallel, so isn't really an
>> +      // auto-increment in the RTL sense, hence we drop the note.
>> +      break;
>> +    case REG_EH_REGION:
>> +      gcc_assert (!*eh_region);
>> +      *eh_region = true;
>> +      result = alloc_reg_note (REG_EH_REGION, XEXP (note, 0), result);
>> +      break;
>> +    case REG_CFA_DEF_CFA:
>> +    case REG_CFA_OFFSET:
>> +    case REG_CFA_RESTORE:
>> +      result = alloc_reg_note (REG_NOTE_KIND (note),
>> +                               copy_rtx (XEXP (note, 0)),
>> +                               result);
>> +      break;
>> +    case REG_FRAME_RELATED_EXPR:
>> +      gcc_assert (!*fr_expr);
>> +      *fr_expr = copy_rtx (XEXP (note, 0));
>> +      break;
>> +    default:
>> +      // Unexpected REG_NOTE kind.
>> +      gcc_unreachable ();
>> +    }
>> +    }
>> +
>> +  return result;
>> +}
>> +
>> +// Return the notes that should be attached to a combination of I1 and I2, 
>> where
>> +// *I1 < *I2.  LOAD_P is true for loads.
>> +rtx
>> +combine_reg_notes (insn_info *i1, insn_info *i2, bool load_p)
>> +{
>> +  // Temporary storage for REG_FRAME_RELATED_EXPR notes.
>> +  rtx fr_expr[2] = {};
>> +
>> +  bool found_eh_region = false;
>> +  rtx result = NULL_RTX;
>> +  result = filter_notes (REG_NOTES (i2->rtl ()), result,
>> +                     &found_eh_region, fr_expr);
>> +  result = filter_notes (REG_NOTES (i1->rtl ()), result,
>> +                     &found_eh_region, fr_expr + 1);
>> +
>> +  if (!load_p)
>> +    {
>> +      // Simple frame-related sp-relative saves don't need CFI notes, but 
>> when
>> +      // we combine them into an pair mem store  we will need a CFI note as
>> +      // dwarf2cfi can't interpret the unspec pair representation directly.
>> +      if (RTX_FRAME_RELATED_P (i1->rtl ()) && !fr_expr[0])
>> +    fr_expr[0] = copy_rtx (PATTERN (i1->rtl ()));
>> +      if (RTX_FRAME_RELATED_P (i2->rtl ()) && !fr_expr[1])
>> +    fr_expr[1] = copy_rtx (PATTERN (i2->rtl ()));
>> +    }
>> +
>> +  rtx fr_pat = NULL_RTX;
>> +  if (fr_expr[0] && fr_expr[1])
>> +    {
>> +      // Combining two frame-related insns, need to construct
>> +      // a REG_FRAME_RELATED_EXPR note which represents the combined
>> +      // operation.
>> +      RTX_FRAME_RELATED_P (fr_expr[1]) = 1;
>> +      fr_pat = gen_rtx_PARALLEL (VOIDmode,
>> +                             gen_rtvec (2, fr_expr[0], fr_expr[1]));
>> +    }
>> +  else
>> +    fr_pat = fr_expr[0] ? fr_expr[0] : fr_expr[1];
>> +
>> +  if (fr_pat)
>> +    result = alloc_reg_note (REG_FRAME_RELATED_EXPR,
>> +                         fr_pat, result);
>> +
>> +  return result;
>> +}
>> +
>> +// Given two memory accesses in PATS, at least one of which is of a
>> +// writeback form, extract two non-writeback memory accesses addressed
>> +// relative to the initial value of the base register, and output these
>> +// in PATS.  Return an rtx that represents the overall change to the
>> +// base register.
>> +rtx
>> +extract_writebacks (bool load_p, rtx pats[2], int changed)
>> +{
>> +  rtx base_reg = NULL_RTX;
>> +  poly_int64 current_offset = 0;
>> +
>> +  poly_int64 offsets[2];
>> +
>> +  for (int i = 0; i < 2; i++)
>> +    {
>> +      rtx mem = XEXP (pats[i], load_p);
>> +      rtx reg = XEXP (pats[i], !load_p);
>> +
>> +      rtx addr = XEXP (mem, 0);
>> +      const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
>> +
>> +      poly_int64 offset;
>> +      rtx this_base = pair_mem_strip_offset (mem, &offset);
>> +      gcc_assert (REG_P (this_base));
>> +      if (base_reg)
>> +    gcc_assert (rtx_equal_p (base_reg, this_base));
>> +      else
>> +    base_reg = this_base;
>> +
>> +      // If we changed base for the current insn, then we already
>> +      // derived the correct mem for this insn from the effective
>> +      // address of the other access.
>> +      if (i == changed)
>> +    {
>> +      gcc_checking_assert (!autoinc_p);
>> +      offsets[i] = offset;
>> +      continue;
>> +    }
>> +
>> +      if (autoinc_p && any_pre_modify_p (addr))
>> +    current_offset += offset;
>> +
>> +      poly_int64 this_off = current_offset;
>> +      if (!autoinc_p)
>> +    this_off += offset;
>> +
>> +      offsets[i] = this_off;
>> +      rtx new_mem = change_address (mem, GET_MODE (mem),
>> +                                plus_constant (GET_MODE (base_reg),
>> +                                               base_reg, this_off));
>> +      pats[i] = load_p
>> +    ? gen_rtx_SET (reg, new_mem)
>> +    : gen_rtx_SET (new_mem, reg);
>> +
>> +      if (autoinc_p && any_post_modify_p (addr))
>> +    current_offset += offset;
>> +    }
>> +
>> +  if (known_eq (current_offset, 0))
>> +    return NULL_RTX;
>> +
>> +  return gen_rtx_SET (base_reg, plus_constant (GET_MODE (base_reg),
>> +                                           base_reg, current_offset));
>> +}
>> +
>> +// INSNS contains either {nullptr, pair insn} (when promoting an existing
>> +// non-writeback pair) or contains the candidate insns used to form the pair
>> +// (when fusing a new pair).
>> +//
>> +// PAIR_RANGE specifies where we want to form the final pair.
>> +// INITIAL_OFFSET gives the current base offset for the pair.
>> +// Bit I of INITIAL_WRITEBACK is set if INSNS[I] initially had writeback.
>> +// ACCESS_SIZE gives the access size for a single arm of the pair.
>> +// BASE_DEF gives the initial def of the base register consumed by the pair.
>> +//
>> +// Given the above, this function looks for a trailing destructive update 
>> of the
>> +// base register.  If there is one, we choose the first such update after
>> +// PAIR_DST that is still in the same BB as our pair.  We return the new 
>> def in
>> +// *ADD_DEF and the resulting writeback effect in *WRITEBACK_EFFECT.
>> +insn_info *
>> +find_trailing_add (insn_info *insns[2],
>> +               const insn_range_info &pair_range,
>> +               int initial_writeback,
>> +               rtx *writeback_effect,
>> +               def_info **add_def,
>> +               def_info *base_def,
>> +               poly_int64 initial_offset,
>> +               unsigned access_size)
>> +{
>> +  // Punt on frame-related insns, it is better to be conservative and
>> +  // not try to form writeback pairs here, and means we don't have to
>> +  // worry about the writeback case in forming REG_FRAME_RELATED_EXPR
>> +  // notes (see combine_reg_notes).
>> +  if ((insns[0] && RTX_FRAME_RELATED_P (insns[0]->rtl ()))
>> +      || RTX_FRAME_RELATED_P (insns[1]->rtl ()))
>> +    return nullptr;
>> +
>> +  insn_info *pair_dst = pair_range.singleton ();
>> +  gcc_assert (pair_dst);
>> +
>> +  def_info *def = base_def->next_def ();
>> +
>> +  // In the case that either of the initial pair insns had writeback,
>> +  // then there will be intervening defs of the base register.
>> +  // Skip over these.
>> +  for (int i = 0; i < 2; i++)
>> +    if (initial_writeback & (1 << i))
>> +      {
>> +    gcc_assert (def->insn () == insns[i]);
>> +    def = def->next_def ();
>> +      }
>> +
>> +  if (!def || def->bb () != pair_dst->bb ())
>> +    return nullptr;
>> +
>> +  // DEF should now be the first def of the base register after PAIR_DST.
>> +  insn_info *cand = def->insn ();
>> +  gcc_assert (*cand > *pair_dst);
>> +
>> +  const auto base_regno = base_def->regno ();
>> +
>> +  // If CAND doesn't also use our base register,
>> +  // it can't destructively update it.
>> +  if (!find_access (cand->uses (), base_regno))
>> +    return nullptr;
>> +
>> +  auto rti = cand->rtl ();
>> +
>> +  if (!INSN_P (rti))
>> +    return nullptr;
>> +
>> +  auto pat = PATTERN (rti);
>> +  if (GET_CODE (pat) != SET)
>> +    return nullptr;
>> +
>> +  auto dest = XEXP (pat, 0);
>> +  if (!REG_P (dest) || REGNO (dest) != base_regno)
>> +    return nullptr;
>> +
>> +  poly_int64 offset;
>> +  rtx rhs_base = strip_offset (XEXP (pat, 1), &offset);
>> +  if (!REG_P (rhs_base)
>> +      || REGNO (rhs_base) != base_regno
>> +      || !offset.is_constant ())
>> +    return nullptr;
>> +
>> +  // If the initial base offset is zero, we can handle any add offset
>> +  // (post-inc).  Otherwise, we require the offsets to match (pre-inc).
>> +  if (!known_eq (initial_offset, 0) && !known_eq (offset, initial_offset))
>> +    return nullptr;
>> +
>> +  auto off_hwi = offset.to_constant ();
>> +
>> +  if (off_hwi % access_size != 0)
>> +    return nullptr;
>> +
>> +  off_hwi /= access_size;
>> +
>> +  if (off_hwi < PAIR_MEM_MIN_IMM || off_hwi > PAIR_MEM_MAX_IMM)
>> +    return nullptr;
>> +
>> +  auto dump_prefix = [&]()
>> +    {
>> +      if (!insns[0])
>> +    fprintf (dump_file, "existing pair i%d: ", insns[1]->uid ());
>> +      else
>> +    fprintf (dump_file, "  (%d,%d)",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +    };
>> +
>> +  insn_info *hazard = latest_hazard_before (cand, nullptr, insns[1]);
>> +  if (!hazard || *hazard <= *pair_dst)
>> +    {
>> +      if (dump_file)
>> +    {
>> +      dump_prefix ();
>> +      fprintf (dump_file,
>> +               "folding in trailing add (%d) to use writeback form\n",
>> +               cand->uid ());
>> +    }
>> +
>> +      *add_def = def;
>> +      *writeback_effect = copy_rtx (pat);
>> +      return cand;
>> +    }
>> +
>> +  if (dump_file)
>> +    {
>> +      dump_prefix ();
>> +      fprintf (dump_file,
>> +           "can't fold in trailing add (%d), hazard = %d\n",
>> +           cand->uid (), hazard->uid ());
>> +    }
>> +
>> +  return nullptr;
>> +}
>> +
>> +// Return true if STORE_INSN may modify mem rtx MEM.  Make sure we keep
>> +// within our BUDGET for alias analysis.
>> +bool
>> +store_modifies_mem_p (rtx mem, insn_info *store_insn, int &budget)
>> +{
>> +  if (!budget)
>> +    {
>> +      if (dump_file)
>> +    {
>> +      fprintf (dump_file,
>> +               "exceeded budget, assuming store %d aliases with mem ",
>> +               store_insn->uid ());
>> +      print_simple_rtl (dump_file, mem);
>> +      fprintf (dump_file, "\n");
>> +    }
>> +
>> +      return true;
>> +    }
>> +
>> +  budget--;
>> +  return memory_modified_in_insn_p (mem, store_insn->rtl ());
>> +}
>> +
>> +// Return true if LOAD may be modified by STORE.  Make sure we keep
>> +// within our BUDGET for alias analysis.
>> +bool
>> +load_modified_by_store_p (insn_info *load,
>> +                      insn_info *store,
>> +                      int &budget)
>> +{
>> +  gcc_checking_assert (budget >= 0);
>> +
>> +  if (!budget)
>> +    {
>> +      if (dump_file)
>> +    {
>> +      fprintf (dump_file,
>> +               "exceeded budget, assuming load %d aliases with store %d\n",
>> +               load->uid (), store->uid ());
>> +    }
>> +      return true;
>> +    }
>> +
>> +  // It isn't safe to re-order stores over calls.
>> +  if (CALL_P (load->rtl ()))
>> +    return true;
>> +
>> +  budget--;
>> +
>> +  // Iterate over all MEMs in the load, seeing if any alias with
>> +  // our store.
>> +  subrtx_var_iterator::array_type array;
>> +  rtx pat = PATTERN (load->rtl ());
>> +  FOR_EACH_SUBRTX_VAR (iter, array, pat, NONCONST)
>> +    if (MEM_P (*iter) && memory_modified_in_insn_p (*iter, store->rtl ()))
>> +      return true;
>> +
>> +  return false;
>> +}
>> +// Given candidate store insns FIRST and SECOND, see if we can re-purpose 
>> one
>> +// of them (together with its def of memory) for the stp insn.  If so, 
>> return
>> +// that insn.  Otherwise, return null.
>> +insn_info *
>> +try_repurpose_store (insn_info *first,
>> +                 insn_info *second,
>> +                 const insn_range_info &move_range)
>> +{
>> +  def_info * const defs[2] = {
>> +    memory_access (first->defs ()),
>> +    memory_access (second->defs ())
>> +  };
>> +
>> +  if (move_range.includes (first)
>> +      || ranges_overlap_p (move_range, def_downwards_move_range (defs[0])))
>> +    return first;
>> +
>> +  if (move_range.includes (second)
>> +      || ranges_overlap_p (move_range, def_upwards_move_range (defs[1])))
>> +    return second;
>> +
>> +  return nullptr;
>> +}
>> +
>> +
>> +// Reset the debug insn containing USE (the debug insn has been
>> +// optimized away).
>> +void
>> +reset_debug_use (use_info *use)
>> +{
>> +  auto use_insn = use->insn ();
>> +  auto use_rtl = use_insn->rtl ();
>> +  insn_change change (use_insn);
>> +  change.new_uses = {};
>> +  INSN_VAR_LOCATION_LOC (use_rtl) = gen_rtx_UNKNOWN_VAR_LOC ();
>> +  crtl->ssa->change_insn (change);
>> +}
>> +
>> +// Update debug uses when folding in a trailing add insn to form a
>> +// writeback pair.
>> +//
>> +// ATTEMPT is used to allocate RTL-SSA temporaries for the changes,
>> +// the final pair is placed immediately after PAIR_DST, TRAILING_ADD
>> +// is a trailing add insn which is being folded into the pair to make it
>> +// use writeback addressing, and WRITEBACK_EFFECT is the pattern for
>> +// TRAILING_ADD.
>> +void
>> +fixup_debug_uses_trailing_add (obstack_watermark &attempt,
>> +                           insn_info *pair_dst,
>> +                           insn_info *trailing_add,
>> +                           rtx writeback_effect)
>> +{
>> +  rtx base = SET_DEST (writeback_effect);
>> +
>> +  poly_int64 wb_offset;
>> +  rtx base2 = strip_offset (SET_SRC (writeback_effect), &wb_offset);
>> +  gcc_checking_assert (rtx_equal_p (base, base2));
>> +
>> +  auto defs = trailing_add->defs ();
>> +  gcc_checking_assert (defs.size () == 1);
>> +  def_info *def = defs[0];
>> +
>> +  if (auto set = safe_dyn_cast<set_info *> (def->prev_def ()))
>> +    for (auto use : iterate_safely (set->debug_insn_uses ()))
>> +      if (*use->insn () > *pair_dst)
>> +    // DEF is getting re-ordered above USE, fix up USE accordingly.
>> +    fixup_debug_use (attempt, use, def, base, wb_offset);
>> +}
>> +
>> +// USE is a debug use that needs updating because DEF (a def of the same
>> +// register) is being re-ordered over it.  If BASE is non-null, then DEF
>> +// is an update of the register BASE by a constant, given by WB_OFFSET,
>> +// and we can preserve debug info by accounting for the change in side
>> +// effects.
>> +void
>> +fixup_debug_use (obstack_watermark &attempt,
>> +             use_info *use,
>> +             def_info *def,
>> +             rtx base,
>> +             poly_int64 wb_offset)
>> +{
>> +  auto use_insn = use->insn ();
>> +  if (base)
>> +    {
>> +      auto use_rtl = use_insn->rtl ();
>> +      insn_change change (use_insn);
>> +
>> +      gcc_checking_assert (REG_P (base) && use->regno () == REGNO (base));
>> +      change.new_uses = check_remove_regno_access (attempt,
>> +                                               change.new_uses,
>> +                                               use->regno ());
>> +
>> +      // The effect of the writeback is to add WB_OFFSET to BASE.  If
>> +      // we're re-ordering DEF below USE, then we update USE by adding
>> +      // WB_OFFSET to it.  Otherwise, if we're re-ordering DEF above
>> +      // USE, we update USE by undoing the effect of the writeback
>> +      // (subtracting WB_OFFSET).
>> +      use_info *new_use;
>> +      if (*def->insn () > *use_insn)
>> +    {
>> +      // We now need USE_INSN to consume DEF.  Create a new use of DEF.
>> +      //
>> +      // N.B. this means until we call change_insns for the main change
>> +      // group we will temporarily have a debug use consuming a def that
>> +      // comes after it, but RTL-SSA doesn't currently support updating
>> +      // debug insns as part of the main change group (together with
>> +      // nondebug changes), so we will have to live with this update
>> +      // leaving the IR being temporarily inconsistent.  It seems to
>> +      // work out OK once the main change group is applied.
>> +      wb_offset *= -1;
>> +      new_use = crtl->ssa->create_use (attempt,
>> +                                       use_insn,
>> +                                       as_a<set_info *> (def));
>> +    }
>> +      else
>> +    new_use = find_access (def->insn ()->uses (), use->regno ());
>> +
>> +      change.new_uses = insert_access (attempt, new_use, change.new_uses);
>> +
>> +      if (dump_file)
>> +    {
>> +      const char *dir = (*def->insn () < *use_insn) ? "down" : "up";
>> +      pretty_printer pp;
>> +      pp_string (&pp, "[");
>> +      pp_access (&pp, use, 0);
>> +      pp_string (&pp, "]");
>> +      pp_string (&pp, " due to wb def ");
>> +      pp_string (&pp, "[");
>> +      pp_access (&pp, def, 0);
>> +      pp_string (&pp, "]");
>> +      fprintf (dump_file,
>> +               "  i%d: fix up debug use %s re-ordered %s, "
>> +               "sub r%u -> r%u + ",
>> +               use_insn->uid (), pp_formatted_text (&pp),
>> +               dir, REGNO (base), REGNO (base));
>> +      print_dec (wb_offset, dump_file);
>> +      fprintf (dump_file, "\n");
>> +    }
>> +
>> +      insn_propagation prop (use_rtl, base,
>> +                         plus_constant (GET_MODE (base), base, wb_offset));
>> +      if (prop.apply_to_pattern (&INSN_VAR_LOCATION_LOC (use_rtl)))
>> +    crtl->ssa->change_insn (change);
>> +      else
>> +    {
>> +      if (dump_file)
>> +        fprintf (dump_file, "  i%d: RTL substitution failed (%s)"
>> +                 ", resetting debug insn", use_insn->uid (),
>> +                 prop.failure_reason);
>> +      reset_debug_use (use);
>> +    }
>> +    }
>> +  else
>> +    {
>> +      if (dump_file)
>> +    {
>> +      pretty_printer pp;
>> +      pp_string (&pp, "[");
>> +      pp_access (&pp, use, 0);
>> +      pp_string (&pp, "] due to re-ordered load def [");
>> +      pp_access (&pp, def, 0);
>> +      pp_string (&pp, "]");
>> +      fprintf (dump_file, "  i%d: resetting debug use %s\n",
>> +               use_insn->uid (), pp_formatted_text (&pp));
>> +    }
>> +      reset_debug_use (use);
>> +    }
>> +}
>> +
>> +// Called from fuse_pair, fixes up any debug uses that will be affected
>> +// by the changes.
>> +//
>> +// ATTEMPT is the obstack watermark used to allocate RTL-SSA temporaries for
>> +// the changes, INSNS gives the candidate insns: at this point the use/def
>> +// information should still be as on entry to fuse_pair, but the patterns 
>> may
>> +// have changed, hence we pass ORIG_RTL which contains the original patterns
>> +// for the candidate insns.
>> +//
>> +// The final pair will be placed immediately after PAIR_DST, LOAD_P is true 
>> if
>> +// it is a load pair, bit I of WRITEBACK is set if INSNS[I] originally had
>> +// writeback, and WRITEBACK_EFFECT is an rtx describing the overall update 
>> to
>> +// the base register in the final pair (if any).  BASE_REGNO gives the 
>> register
>> +// number of the base register used in the final pair.
>> +void
>> +fixup_debug_uses (obstack_watermark &attempt,
>> +              insn_info *insns[2],
>> +              rtx orig_rtl[2],
>> +              insn_info *pair_dst,
>> +              insn_info *trailing_add,
>> +              bool load_p,
>> +              int writeback,
>> +              rtx writeback_effect,
>> +              unsigned base_regno)
>> +{
>> +  // USE is a debug use that needs updating because DEF (a def of the
>> +  // resource) is being re-ordered over it.  If WRITEBACK_PAT is non-NULL,
>> +  // then it gives the original RTL pattern for DEF's insn, and DEF is a
>> +  // writeback update of the base register.
>> +  //
>> +  // This simply unpacks WRITEBACK_PAT if needed and calls fixup_debug_use.
>> +  auto update_debug_use = [&](use_info *use, def_info *def,
>> +                          rtx writeback_pat)
>> +    {
>> +      poly_int64 offset = 0;
>> +      rtx base = NULL_RTX;
>> +      if (writeback_pat)
>> +    {
>> +      rtx mem = XEXP (writeback_pat, load_p);
>> +      gcc_checking_assert (GET_RTX_CLASS (GET_CODE (XEXP (mem, 0)))
>> +                           == RTX_AUTOINC);
>> +
>> +      base = pair_mem_strip_offset (mem, &offset);
>> +      gcc_checking_assert (REG_P (base) && REGNO (base) == base_regno);
>> +    }
>> +      fixup_debug_use (attempt, use, def, base, offset);
>> +    };
>> +
>> +  // Reset any debug uses of mem over which we re-ordered a store.
>> +  //
>> +  // It would be nice to try and preserve debug info here, but it seems that
>> +  // would require doing alias analysis to see if the store aliases with the
>> +  // debug use, which seems a little extravagant just to preserve debug 
>> info.
>> +  if (!load_p)
>> +    {
>> +      auto def = memory_access (insns[0]->defs ());
>> +      auto last_def = memory_access (insns[1]->defs ());
>> +      for (; def != last_def; def = def->next_def ())
>> +    {
>> +      auto set = as_a<set_info *> (def);
>> +      for (auto use : iterate_safely (set->debug_insn_uses ()))
>> +        {
>> +          if (dump_file)
>> +            fprintf (dump_file, "  i%d: resetting debug use of mem\n",
>> +                     use->insn ()->uid ());
>> +          reset_debug_use (use);
>> +        }
>> +    }
>> +    }
>> +
>> +  // Now let's take care of register uses, starting with debug uses
>> +  // attached to defs from our first insn.
>> +  for (auto def : insns[0]->defs ())
>> +    {
>> +      auto set = dyn_cast<set_info *> (def);
>> +      if (!set || set->is_mem () || !set->first_debug_insn_use ())
>> +    continue;
>> +
>> +      def_info *defs[2] = {
>> +    def,
>> +    find_access (insns[1]->defs (), def->regno ())
>> +      };
>> +
>> +      rtx writeback_pats[2] = {};
>> +      if (def->regno () == base_regno)
>> +    for (int i = 0; i < 2; i++)
>> +      if (writeback & (1 << i))
>> +        {
>> +          gcc_checking_assert (defs[i]);
>> +          writeback_pats[i] = orig_rtl[i];
>> +        }
>> +
>> +      // Now that we've characterized the defs involved, go through the
>> +      // debug uses and determine how to update them (if needed).
>> +      for (auto use : iterate_safely (set->debug_insn_uses ()))
>> +    {
>> +      if (*pair_dst < *use->insn () && defs[1])
>> +        // We're re-ordering defs[1] above a previous use of the
>> +        // same resource.
>> +        update_debug_use (use, defs[1], writeback_pats[1]);
>> +      else if (*pair_dst >= *use->insn ())
>> +        // We're re-ordering defs[0] below its use.
>> +        update_debug_use (use, defs[0], writeback_pats[0]);
>> +    }
>> +    }
>> +
>> +  // Now let's look at registers which are def'd by the second insn
>> +  // but not by the first insn, there may still be debug uses of a
>> +  // previous def which can be affected by moving the second insn up.
>> +  for (auto def : insns[1]->defs ())
>> +    {
>> +      // This should be M log N where N is the number of defs in
>> +      // insns[0] and M is the number of defs in insns[1].
>> +      if (def->is_mem () || find_access (insns[0]->defs (), def->regno ()))
>> +      continue;
>> +
>> +      auto prev_set = safe_dyn_cast<set_info *> (def->prev_def ());
>> +      if (!prev_set)
>> +    continue;
>> +
>> +      rtx writeback_pat = NULL_RTX;
>> +      if (def->regno () == base_regno && (writeback & 2))
>> +    writeback_pat = orig_rtl[1];
>> +
>> +      // We have a def in insns[1] which isn't def'd by the first insn.
>> +      // Look to the previous def and see if it has any debug uses.
>> +      for (auto use : iterate_safely (prev_set->debug_insn_uses ()))
>> +    if (*pair_dst < *use->insn ())
>> +      // We're ordering DEF above a previous use of the same register.
>> +      update_debug_use (use, def, writeback_pat);
>> +    }
>> +
>> +  if ((writeback & 2) && !writeback_effect)
>> +    {
>> +      // If the second insn initially had writeback but the final
>> +      // pair does not, then there may be trailing debug uses of the
>> +      // second writeback def which need re-parenting: do that.
>> +      auto def = find_access (insns[1]->defs (), base_regno);
>> +      gcc_assert (def);
>> +      auto set = as_a<set_info *> (def);
>> +      for (auto use : iterate_safely (set->debug_insn_uses ()))
>> +    {
>> +      insn_change change (use->insn ());
>> +      change.new_uses = check_remove_regno_access (attempt,
>> +                                                   change.new_uses,
>> +                                                   base_regno);
>> +      auto new_use = find_access (insns[0]->uses (), base_regno);
>> +
>> +      // N.B. insns must have already shared a common base due to writeback.
>> +      gcc_assert (new_use);
>> +
>> +      if (dump_file)
>> +        fprintf (dump_file,
>> +                 "  i%d: cancelling wb, re-parenting trailing debug use\n",
>> +                 use->insn ()->uid ());
>> +
>> +      change.new_uses = insert_access (attempt, new_use, change.new_uses);
>> +      crtl->ssa->change_insn (change);
>> +    }
>> +    }
>> +  else if (trailing_add)
>> +    fixup_debug_uses_trailing_add (attempt, pair_dst, trailing_add,
>> +                               writeback_effect);
>> +}
>> +
>> +// Given INSNS (in program order) which are known to be adjacent, look
>> +// to see if either insn has a suitable RTL (register) base that we can
>> +// use to form a pair.  Push these to BASE_CANDS if we find any.  CAND_MEMs
>> +// gives the relevant mems from the candidate insns, ACCESS_SIZE gives the
>> +// size of a single candidate access, and REVERSED says whether the accesses
>> +// are inverted in offset order.
>> +//
>> +// Returns an integer where bit (1 << i) is set if INSNS[i] uses writeback
>> +// addressing.
>> +int
>> +get_viable_bases (insn_info *insns[2],
>> +              vec<base_cand> &base_cands,
>> +              rtx cand_mems[2],
>> +              unsigned access_size,
>> +              bool reversed)
>> +{
>> +  // We discovered this pair through a common base.  Need to ensure that
>> +  // we have a common base register that is live at both locations.
>> +  def_info *base_defs[2] = {};
>> +  int writeback = 0;
>> +  for (int i = 0; i < 2; i++)
>> +    {
>> +      const bool is_lower = (i == reversed);
>> +      poly_int64 poly_off;
>> +      rtx base = pair_mem_strip_offset (cand_mems[i], &poly_off);
>> +      if (GET_RTX_CLASS (GET_CODE (XEXP (cand_mems[i], 0))) == RTX_AUTOINC)
>> +    writeback |= (1 << i);
>> +
>> +      if (!REG_P (base) || !poly_off.is_constant ())
>> +    continue;
>> +
>> +      // Punt on accesses relative to eliminable regs.  See the comment in
>> +      // pair_fusion::track_access for a detailed explanation of this.
>> +      if (!reload_completed
>> +      && (REGNO (base) == FRAME_POINTER_REGNUM
>> +          || REGNO (base) == ARG_POINTER_REGNUM))
>> +    continue;
>> +
>> +      HOST_WIDE_INT base_off = poly_off.to_constant ();
>> +
>> +      // It should be unlikely that we ever punt here, since MEM_EXPR offset
>> +      // alignment should be a good proxy for register offset alignment.
>> +      if (base_off % access_size != 0)
>> +    {
>> +      if (dump_file)
>> +        fprintf (dump_file,
>> +                 "base not viable, offset misaligned (insn %d)\n",
>> +                 insns[i]->uid ());
>> +      continue;
>> +    }
>> +
>> +      base_off /= access_size;
>> +
>> +      if (!is_lower)
>> +    base_off--;
>> +
>> +      if (base_off < PAIR_MEM_MIN_IMM || base_off > PAIR_MEM_MAX_IMM)
>> +    continue;
>> +
>> +      use_info *use = find_access (insns[i]->uses (), REGNO (base));
>> +      gcc_assert (use);
>> +      base_defs[i] = use->def ();
>> +    }
>> +
>> +  if (!base_defs[0] && !base_defs[1])
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file, "no viable base register for pair (%d,%d)\n",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +      return writeback;
>> +    }
>> +
>> +  for (int i = 0; i < 2; i++)
>> +    if ((writeback & (1 << i)) && !base_defs[i])
>> +      {
>> +    if (dump_file)
>> +      fprintf (dump_file, "insn %d has writeback but base isn't viable\n",
>> +               insns[i]->uid ());
>> +    return writeback;
>> +      }
>> +
>> +  if (writeback == 3
>> +      && base_defs[0]->regno () != base_defs[1]->regno ())
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "pair (%d,%d): double writeback with distinct regs (%d,%d): "
>> +             "punting\n",
>> +             insns[0]->uid (), insns[1]->uid (),
>> +             base_defs[0]->regno (), base_defs[1]->regno ());
>> +      return writeback;
>> +    }
>> +
>> +  if (base_defs[0] && base_defs[1]
>> +      && base_defs[0]->regno () == base_defs[1]->regno ())
>> +    {
>> +      // Easy case: insns already share the same base reg.
>> +      base_cands.quick_push (base_defs[0]);
>> +      return writeback;
>> +    }
>> +
>> +  // Otherwise, we know that one of the bases must change.
>> +  //
>> +  // Note that if there is writeback we must use the writeback base
>> +  // (we know now there is exactly one).
>> +  for (int i = 0; i < 2; i++)
>> +    if (base_defs[i] && (!writeback || (writeback & (1 << i))))
>> +      base_cands.quick_push (base_cand { base_defs[i], i });
>> +
>> +  return writeback;
>> +}
>> +
>> +void
>> +dump_insn_list (FILE *f, const insn_list_t &l)
>> +{
>> +  fprintf (f, "(");
>> +
>> +  auto i = l.begin ();
>> +  auto end = l.end ();
>> +
>> +  if (i != end)
>> +    fprintf (f, "%d", (*i)->uid ());
>> +  i++;
>> +
>> +  for (; i != end; i++)
>> +    fprintf (f, ", %d", (*i)->uid ());
>> +
>> +  fprintf (f, ")");
>> +}
>> diff --git a/gcc/pair-fusion.cc b/gcc/pair-fusion.cc
>> new file mode 100644
>> index 00000000000..02899410183
>> --- /dev/null
>> +++ b/gcc/pair-fusion.cc
>> @@ -0,0 +1,1225 @@
>> +// Generic code for Pair MEM  fusion optimization pass.
>> +// Copyright (C) 2023-2024 Free Software Foundation, Inc.
>> +//
>> +// This file is part of GCC.
>> +//
>> +// GCC is free software; you can redistribute it and/or modify it
>> +// under the terms of the GNU General Public License as published by
>> +// the Free Software Foundation; either version 3, or (at your option)
>> +// any later version.
>> +//
>> +// GCC is distributed in the hope that it will be useful, but
>> +// WITHOUT ANY WARRANTY; without even the implied warranty of
>> +// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
>> +// General Public License for more details.
>> +//
>> +// You should have received a copy of the GNU General Public License
>> +// along with GCC; see the file COPYING3.  If not see
>> +// <http://www.gnu.org/licenses/>.
>> +
>> +#include "pair-fusion-base.h"
>> +
>> +splay_tree_node<access_record *> *
>> +pair_fusion::node_alloc (access_record *access)
>> +{
>> +  using T = splay_tree_node<access_record *>;
>> +  void *addr = obstack_alloc (&m_obstack, sizeof (T));
>> +  return new (addr) T (access);
>> +}
>> +// Given a candidate access INSN (with mem MEM), see if it has a suitable
>> +// MEM_EXPR base (i.e. a tree decl) relative to which we can track the 
>> access.
>> +// LFS is used as part of the key to the hash table, see track_access.
>> +bool
>> +pair_fusion::track_via_mem_expr (insn_info *insn, rtx mem, lfs_fields lfs)
>> +{
>> +  if (!MEM_EXPR (mem) || !MEM_OFFSET_KNOWN_P (mem))
>> +    return false;
>> +
>> +  poly_int64 offset;
>> +  tree base_expr = get_addr_base_and_unit_offset (MEM_EXPR (mem),
>> +                                              &offset);
>> +  if (!base_expr || !DECL_P (base_expr))
>> +    return false;
>> +
>> +  offset += MEM_OFFSET (mem);
>> +
>> +  const machine_mode mem_mode = GET_MODE (mem);
>> +  const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
>> +
>> +  // Punt on misaligned offsets.  PAIR MEM  instructions require offsets to 
>> be a
>> +  // multiple of the access size, and we believe that misaligned offsets on
>> +  // MEM_EXPR bases are likely to lead to misaligned offsets w.r.t. RTL 
>> bases.
>> +  if (!multiple_p (offset, mem_size))
>> +    return false;
>> +
>> +  const auto key = std::make_pair (base_expr, encode_lfs (lfs));
>> +  access_group &group = expr_map.get_or_insert (key, NULL);
>> +  auto alloc = [&](access_record *access) { return node_alloc (access); };
>> +  group.track (alloc, offset, insn);
>> +
>> +  if (dump_file)
>> +    {
>> +      fprintf (dump_file, "[bb %u] tracking insn %d via ",
>> +           m_bb->index (), insn->uid ());
>> +      print_node_brief (dump_file, "mem expr", base_expr, 0);
>> +      fprintf (dump_file, " [L=%d FP=%d, %smode, off=",
>> +           lfs.load_p, lfs.fpsimd_p, mode_name[mem_mode]);
>> +      print_dec (offset, dump_file);
>> +      fprintf (dump_file, "]\n");
>> +    }
>> +
>> +  return true;
>> +}
>> +// Main function to begin pair discovery.  Given a memory access INSN,
>> +// determine whether it could be a candidate for fusing into an pair mem,
>> +// and if so, track it in the appropriate data structure for this basic
>> +// block.  LOAD_P is true if the access is a load, and MEM is the mem
>> +// rtx that occurs in INSN.
>> +void
>> +pair_fusion::track_access (insn_info *insn, bool load_p, rtx mem)
>> +{
>> +  // We can't combine volatile MEMs, so punt on these.
>> +  if (MEM_VOLATILE_P (mem))
>> +    return;
>> +
>> +  // Ignore writeback accesses if the param says to do so
>> +  if (pair_is_writeback ()
>> +      && GET_RTX_CLASS (GET_CODE (XEXP (mem, 0))) == RTX_AUTOINC)
>> +    return;
>> +
>> +  const machine_mode mem_mode = GET_MODE (mem);
>> +
>> +  if (!pair_operand_mode_ok_p (mem_mode))
>> +    return;
>> +
>> +  rtx reg_op = XEXP (PATTERN (insn->rtl ()), !load_p);
>> +
>> +  if (pair_check_register_operand (load_p, reg_op, mem_mode))
>> +    return;
>> +  // We want to segregate FP/SIMD accesses from GPR accesses.
>> +  //
>> +  // Before RA, we use the modes, noting that stores of constant zero
>> +  // operands use GPRs (even in non-integer modes).  After RA, we use
>> +  // the hard register numbers.
>> + const bool fpsimd_op_p = is_fpsimd_op_p (reg_op, mem_mode, load_p);
>> +  // Note pair_operand_mode_ok_p already rejected VL modes.
>> +  const HOST_WIDE_INT mem_size = GET_MODE_SIZE (mem_mode).to_constant ();
>> +  const lfs_fields lfs = { load_p, fpsimd_op_p, mem_size };
>> +
>> +  if (track_via_mem_expr (insn, mem, lfs))
>> +    return;
>> +
>> +  poly_int64 mem_off;
>> +  rtx addr = XEXP (mem, 0);
>> +  const bool autoinc_p = GET_RTX_CLASS (GET_CODE (addr)) == RTX_AUTOINC;
>> +  rtx base = pair_mem_strip_offset (mem, &mem_off);
>> +  if (!REG_P (base))
>> +    return;
>> +
>> +  // Need to calculate two (possibly different) offsets:
>> +  //  - Offset at which the access occurs.
>> +  //  - Offset of the new base def.
>> +  poly_int64 access_off;
>> +  if (autoinc_p && any_post_modify_p (addr))
>> +    access_off = 0;
>> +  else
>> +    access_off = mem_off;
>> +
>> +  poly_int64 new_def_off = mem_off;
>> +
>> +  // Punt on accesses relative to eliminable regs.  Since we don't know the
>> +  // elimination offset pre-RA, we should postpone forming pairs on such
>> +  // accesses until after RA.
>> +  //
>> +  // As it stands, addresses with offsets in range for LDR but not
>> +  // in range for PAIR MEM LOAD STORE  are currently reloaded inefficiently,
>> +  // ending up with a separate base register for each pair.
>> +  //
>> +  // In theory LRA should make use of
>> +  // targetm.legitimize_address_displacement to promote sharing of
>> +  // bases among multiple (nearby) address reloads, but the current
>> +  // LRA code returns early from process_address_1 for operands that
>> +  // satisfy "m", even if they don't satisfy the real (relaxed) address
>> +  // constraint; this early return means we never get to the code
>> +  // that calls targetm.legitimize_address_displacement.
>> +  //
>> +  // So for now, it's better to punt when we can't be sure that the
>> +  // offset is in range for PAIR MEM LOAD STORE.  Out-of-range cases can 
>> then be
>> +  // handled after RA by the out-of-range PAIR MEM  peepholes.  Eventually, 
>> it
>> +  // would be nice to handle known out-of-range opportunities in the
>> +  // pass itself (for stack accesses, this would be in the post-RA pass).
>> +  if (!reload_completed
>> +      && (REGNO (base) == FRAME_POINTER_REGNUM
>> +      || REGNO (base) == ARG_POINTER_REGNUM))
>> +    return;
>> +
>> +  // Now need to find def of base register.
>> +  use_info *base_use = find_access (insn->uses (), REGNO (base));
>> +  gcc_assert (base_use);
>> +  def_info *base_def = base_use->def ();
>> +  if (!base_def)
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "base register (regno %d) of insn %d is undefined",
>> +             REGNO (base), insn->uid ());
>> +      return;
>> +    }
>> +
>> +  alt_base *canon_base = canon_base_map.get (base_def);
>> +  if (canon_base)
>> +    {
>> +      // Express this as the combined offset from the canonical base.
>> +      base_def = canon_base->base;
>> +      new_def_off += canon_base->offset;
>> +      access_off += canon_base->offset;
>> +    }
>> +
>> +  if (autoinc_p)
>> +    {
>> +      auto def = find_access (insn->defs (), REGNO (base));
>> +      gcc_assert (def);
>> +
>> +      // Record that DEF = BASE_DEF + MEM_OFF.
>> +      if (dump_file)
>> +    {
>> +      pretty_printer pp;
>> +      pp_access (&pp, def, 0);
>> +      pp_string (&pp, " = ");
>> +      pp_access (&pp, base_def, 0);
>> +      fprintf (dump_file, "[bb %u] recording %s + ",
>> +               m_bb->index (), pp_formatted_text (&pp));
>> +      print_dec (new_def_off, dump_file);
>> +      fprintf (dump_file, "\n");
>> +    }
>> +
>> +      alt_base base_rec { base_def, new_def_off };
>> +      if (canon_base_map.put (def, base_rec))
>> +    gcc_unreachable (); // Base defs should be unique.
>> +    }
>> +
>> +  // Punt on misaligned offsets.  PAIR MEM  require offsets to be a 
>> multiple of
>> +  // the access size.
>> +  if (!multiple_p (mem_off, mem_size))
>> +    return;
>> +
>> +  const auto key = std::make_pair (base_def, encode_lfs (lfs));
>> +  access_group &group = def_map.get_or_insert (key, NULL);
>> +  auto alloc = [&](access_record *access) { return node_alloc (access); };
>> +  group.track (alloc, access_off, insn);
>> +
>> +  if (dump_file)
>> +    {
>> +      pretty_printer pp;
>> +      pp_access (&pp, base_def, 0);
>> +
>> +      fprintf (dump_file, "[bb %u] tracking insn %d via %s",
>> +           m_bb->index (), insn->uid (), pp_formatted_text (&pp));
>> +      fprintf (dump_file,
>> +           " [L=%d, WB=%d, FP=%d, %smode, off=",
>> +           lfs.load_p, autoinc_p, lfs.fpsimd_p, mode_name[mem_mode]);
>> +      print_dec (access_off, dump_file);
>> +      fprintf (dump_file, "]\n");
>> +    }
>> +}
>> +
>> +// We just emitted a tombstone with uid UID, track it in a bitmap for
>> +// this BB so we can easily identify it later when cleaning up tombstones.
>> +void
>> +pair_fusion::track_tombstone (int uid)
>> +{
>> +  if (!m_emitted_tombstone)
>> +    {
>> +      // Lazily initialize the bitmap for tracking tombstone insns.
>> +      bitmap_obstack_initialize (&m_bitmap_obstack);
>> +      bitmap_initialize (&m_tombstone_bitmap, &m_bitmap_obstack);
>> +      m_emitted_tombstone = true;
>> +    }
>> +
>> +  if (!bitmap_set_bit (&m_tombstone_bitmap, uid))
>> +    gcc_unreachable (); // Bit should have changed.
>> +}
>> +
>> +// Given two adjacent memory accesses of the same size, I1 and I2, try
>> +// and see if we can merge them into a pair mem load and store.
>> +//
>> +// ACCESS_SIZE gives the (common) size of a single access, LOAD_P is true
>> +// if the accesses are both loads, otherwise they are both stores.
>> +bool
>> +pair_fusion::try_fuse_pair (bool load_p, unsigned access_size,
>> +                        insn_info *i1, insn_info *i2)
>> +{
>> +  if (dump_file)
>> +    fprintf (dump_file, "analyzing pair (load=%d): (%d,%d)\n",
>> +         load_p, i1->uid (), i2->uid ());
>> +
>> +  insn_info *insns[2];
>> +  bool reversed = false;
>> +  if (*i1 < *i2)
>> +    {
>> +      insns[0] = i1;
>> +      insns[1] = i2;
>> +    }
>> +  else
>> +    {
>> +      insns[0] = i2;
>> +      insns[1] = i1;
>> +      reversed = true;
>> +    }
>> +
>> +  rtx cand_mems[2];
>> +  rtx reg_ops[2];
>> +  rtx pats[2];
>> +  for (int i = 0; i < 2; i++)
>> +    {
>> +      pats[i] = PATTERN (insns[i]->rtl ());
>> +      cand_mems[i] = XEXP (pats[i], load_p);
>> +      reg_ops[i] = XEXP (pats[i], !load_p);
>> +    }
>> +
>> +  if (!load_p && !fuseable_store_p (i1, i2))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "punting on store-mem-pairs due to non fuseable cand 
>> (%d,%d)\n",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +      return false;
>> +    }
>> +
>> +
>> +  if (load_p && reg_overlap_mentioned_p (reg_ops[0], reg_ops[1]))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "punting on pair mem load  due to reg conflcits (%d,%d)\n",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +      return false;
>> +    }
>> +
>> +  if (cfun->can_throw_non_call_exceptions
>> +      && find_reg_note (insns[0]->rtl (), REG_EH_REGION, NULL_RTX)
>> +      && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "can't combine insns with EH side effects (%d,%d)\n",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +      return false;
>> +    }
>> +
>> +  auto_vec<base_cand, 2> base_cands (2);
>> +
>> +  int writeback = get_viable_bases (insns, base_cands, cand_mems,
>> +                                access_size, reversed);
>> +  if (base_cands.is_empty ())
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file, "no viable base for pair (%d,%d)\n",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +      return false;
>> +    }
>> +
>> +  // Punt on frame-related insns with writeback.  We probably won't see
>> +  // these in practice, but this is conservative and ensures we don't
>> +  // have to worry about these later on.
>> +  if (writeback && (RTX_FRAME_RELATED_P (i1->rtl ())
>> +                || RTX_FRAME_RELATED_P (i2->rtl ())))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "rejecting pair (%d,%d): frame-related insn with writeback\n",
>> +             i1->uid (), i2->uid ());
>> +      return false;
>> +    }
>> +
>> +  rtx *ignore = &XEXP (pats[1], load_p);
>> +  for (auto use : insns[1]->uses ())
>> +    if (!use->is_mem ()
>> +    && refers_to_regno_p (use->regno (), use->regno () + 1, pats[1], ignore)
>> +    && use->def () && use->def ()->insn () == insns[0])
>> +      {
>> +    // N.B. we allow a true dependence on the base address, as this
>> +    // happens in the case of auto-inc accesses.  Consider a post-increment
>> +    // load followed by a regular indexed load, for example.
>> +    if (dump_file)
>> +      fprintf (dump_file,
>> +               "%d has non-address true dependence on %d, rejecting pair\n",
>> +               insns[1]->uid (), insns[0]->uid ());
>> +    return false;
>> +      }
>> +
>> +  unsigned i = 0;
>> +  while (i < base_cands.length ())
>> +    {
>> +      base_cand &cand = base_cands[i];
>> +
>> +      rtx *ignore[2] = {};
>> +      for (int j = 0; j < 2; j++)
>> +    if (cand.from_insn == !j)
>> +      ignore[j] = &XEXP (cand_mems[j], 0);
>> +
>> +      insn_info *h = first_hazard_after (insns[0], ignore[0]);
>> +      if (h && *h < *insns[1])
>> +    cand.hazards[0] = h;
>> +
>> +      h = latest_hazard_before (insns[1], ignore[1]);
>> +      if (h && *h > *insns[0])
>> +    cand.hazards[1] = h;
>> +
>> +      if (!cand.viable ())
>> +    {
>> +      if (dump_file)
>> +        fprintf (dump_file,
>> +                 "pair (%d,%d): rejecting base %d due to dataflow "
>> +                 "hazards (%d,%d)\n",
>> +                 insns[0]->uid (),
>> +                 insns[1]->uid (),
>> +                 cand.def->regno (),
>> +                 cand.hazards[0]->uid (),
>> +                 cand.hazards[1]->uid ());
>> +
>> +      base_cands.ordered_remove (i);
>> +    }
>> +      else
>> +    i++;
>> +    }
>> +
>> +  if (base_cands.is_empty ())
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "can't form pair (%d,%d) due to dataflow hazards\n",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +      return false;
>> +    }
>> +
>> +  insn_info *alias_hazards[4] = {};
>> +
>> +  // First def of memory after the first insn, and last def of memory
>> +  // before the second insn, respectively.
>> +  def_info *mem_defs[2] = {};
>> +  if (load_p)
>> +    {
>> +      if (!MEM_READONLY_P (cand_mems[0]))
>> +    {
>> +      mem_defs[0] = memory_access (insns[0]->uses ())->def ();
>> +      gcc_checking_assert (mem_defs[0]);
>> +      mem_defs[0] = mem_defs[0]->next_def ();
>> +    }
>> +      if (!MEM_READONLY_P (cand_mems[1]))
>> +    {
>> +      mem_defs[1] = memory_access (insns[1]->uses ())->def ();
>> +      gcc_checking_assert (mem_defs[1]);
>> +    }
>> +    }
>> +  else
>> +    {
>> +      mem_defs[0] = memory_access (insns[0]->defs ())->next_def ();
>> +      mem_defs[1] = memory_access (insns[1]->defs ())->prev_def ();
>> +      gcc_checking_assert (mem_defs[0]);
>> +      gcc_checking_assert (mem_defs[1]);
>> +    }
>> +
>> +  auto tombstone_p = [&](insn_info *insn) -> bool {
>> +    return m_emitted_tombstone
>> +       && bitmap_bit_p (&m_tombstone_bitmap, insn->uid ());
>> +  };
>> +
>> +  store_walker<false, decltype(tombstone_p)>
>> +    forward_store_walker (mem_defs[0], cand_mems[0], insns[1], tombstone_p);
>> +
>> +  store_walker<true, decltype(tombstone_p)>
>> +    backward_store_walker (mem_defs[1], cand_mems[1], insns[0], 
>> tombstone_p);
>> +
>> +  alias_walker *walkers[4] = {};
>> +  if (mem_defs[0])
>> +    walkers[0] = &forward_store_walker;
>> +  if (mem_defs[1])
>> +    walkers[1] = &backward_store_walker;
>> +
>> +  if (load_p && (mem_defs[0] || mem_defs[1]))
>> +    do_alias_analysis (alias_hazards, walkers, load_p);
>> +  else
>> +    {
>> +      // We want to find any loads hanging off the first store.
>> +      mem_defs[0] = memory_access (insns[0]->defs ());
>> +      load_walker<false> forward_load_walker (mem_defs[0], insns[0], 
>> insns[1]);
>> +      load_walker<true> backward_load_walker (mem_defs[1], insns[1], 
>> insns[0]);
>> +      walkers[2] = &forward_load_walker;
>> +      walkers[3] = &backward_load_walker;
>> +      do_alias_analysis (alias_hazards, walkers, load_p);
>> +      // Now consolidate hazards back down.
>> +      if (alias_hazards[2]
>> +      && (!alias_hazards[0] || (*alias_hazards[2] < *alias_hazards[0])))
>> +    alias_hazards[0] = alias_hazards[2];
>> +
>> +      if (alias_hazards[3]
>> +      && (!alias_hazards[1] || (*alias_hazards[3] > *alias_hazards[1])))
>> +    alias_hazards[1] = alias_hazards[3];
>> +    }
>> +
>> +  if (alias_hazards[0] && alias_hazards[1]
>> +      && *alias_hazards[0] <= *alias_hazards[1])
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "cannot form pair (%d,%d) due to alias conflicts (%d,%d)\n",
>> +             i1->uid (), i2->uid (),
>> +             alias_hazards[0]->uid (), alias_hazards[1]->uid ());
>> +      return false;
>> +    }
>> +
>> +  // Now narrow the hazards on each base candidate using
>> +  // the alias hazards.
>> +  i = 0;
>> +  while (i < base_cands.length ())
>> +    {
>> +      base_cand &cand = base_cands[i];
>> +      if (alias_hazards[0] && (!cand.hazards[0]
>> +                           || *alias_hazards[0] < *cand.hazards[0]))
>> +    cand.hazards[0] = alias_hazards[0];
>> +      if (alias_hazards[1] && (!cand.hazards[1]
>> +                           || *alias_hazards[1] > *cand.hazards[1]))
>> +    cand.hazards[1] = alias_hazards[1];
>> +
>> +      if (cand.viable ())
>> +    i++;
>> +      else
>> +    {
>> +      if (dump_file)
>> +        fprintf (dump_file, "pair (%d,%d): rejecting base %d due to "
>> +                            "alias/dataflow hazards (%d,%d)",
>> +                            insns[0]->uid (), insns[1]->uid (),
>> +                            cand.def->regno (),
>> +                            cand.hazards[0]->uid (),
>> +                            cand.hazards[1]->uid ());
>> +
>> +      base_cands.ordered_remove (i);
>> +    }
>> +    }
>> +
>> +  if (base_cands.is_empty ())
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "cannot form pair (%d,%d) due to alias/dataflow hazards",
>> +             insns[0]->uid (), insns[1]->uid ());
>> +
>> +      return false;
>> +    }
>> +
>> +  base_cand *base = &base_cands[0];
>> +  if (base_cands.length () > 1)
>> +    {
>> +      // If there are still multiple viable bases, it makes sense
>> +      // to choose one that allows us to reduce register pressure,
>> +      // for loads this means moving further down, for stores this
>> +      // means moving further up.
>> +      gcc_checking_assert (base_cands.length () == 2);
>> +      const int hazard_i = !load_p;
>> +      if (base->hazards[hazard_i])
>> +    {
>> +      if (!base_cands[1].hazards[hazard_i])
>> +        base = &base_cands[1];
>> +      else if (load_p
>> +               && *base_cands[1].hazards[hazard_i]
>> +                  > *(base->hazards[hazard_i]))
>> +        base = &base_cands[1];
>> +      else if (!load_p
>> +               && *base_cands[1].hazards[hazard_i]
>> +                  < *(base->hazards[hazard_i]))
>> +        base = &base_cands[1];
>> +    }
>> +    }
>> +
>> +  // Otherwise, hazards[0] > hazards[1].
>> +  // Pair can be formed anywhere in (hazards[1], hazards[0]).
>> +  insn_range_info range (insns[0], insns[1]);
>> +  if (base->hazards[1])
>> +    range.first = base->hazards[1];
>> +  if (base->hazards[0])
>> +    range.last = base->hazards[0]->prev_nondebug_insn ();
>> +
>> +  // If the second insn can throw, narrow the move range to exactly that 
>> insn.
>> +  // This prevents us trying to move the second insn from the end of the BB.
>> +  if (cfun->can_throw_non_call_exceptions
>> +      && find_reg_note (insns[1]->rtl (), REG_EH_REGION, NULL_RTX))
>> +    {
>> +      gcc_assert (range.includes (insns[1]));
>> +      range = insn_range_info (insns[1]);
>> +    }
>> +
>> +  // Placement strategy: push loads down and pull stores up, this should
>> +  // help register pressure by reducing live ranges.
>> +  if (load_p)
>> +    range.first = range.last;
>> +  else
>> +    range.last = range.first;
>> +
>> +  if (dump_file)
>> +    {
>> +      auto print_hazard = [](insn_info *i)
>> +    {
>> +      if (i)
>> +        fprintf (dump_file, "%d", i->uid ());
>> +      else
>> +        fprintf (dump_file, "-");
>> +    };
>> +      auto print_pair = [print_hazard](insn_info **i)
>> +    {
>> +      print_hazard (i[0]);
>> +      fprintf (dump_file, ",");
>> +      print_hazard (i[1]);
>> +    };
>> +
>> +      fprintf (dump_file, "fusing pair [L=%d] (%d,%d), base=%d, hazards: (",
>> +          load_p, insns[0]->uid (), insns[1]->uid (),
>> +          base->def->regno ());
>> +      print_pair (base->hazards);
>> +      fprintf (dump_file, "), move_range: (%d,%d)\n",
>> +           range.first->uid (), range.last->uid ());
>> +    }
>> +
>> +  return fuse_pair (load_p, access_size, writeback,
>> +                i1, i2, *base, range);
>> +}
>> +
>> +
>> +// LEFT_LIST and RIGHT_LIST are lists of candidate instructions where all 
>> insns
>> +// in LEFT_LIST are known to be adjacent to those in RIGHT_LIST.
>> +//
>> +// This function traverses the resulting 2D matrix of possible pair 
>> candidates
>> +// and attempts to merge them into pairs.
>> +//
>> +// The algorithm is straightforward: if we consider a combined list of
>> +// candidates X obtained by merging LEFT_LIST and RIGHT_LIST in program 
>> order,
>> +// then we advance through X until we reach a crossing point (where X[i] and
>> +// X[i+1] come from different source lists).
>> +//
>> +// At this point we know X[i] and X[i+1] are adjacent accesses, and we try 
>> to
>> +// fuse them into a pair.  If this succeeds, we remove X[i] and X[i+1] from
>> +// their original lists and continue as above.
>> +//
>> +// In the failure case, we advance through the source list containing X[i] 
>> and
>> +// continue as above (proceeding to the next crossing point).
>> +//
>> +// The rationale for skipping over groups of consecutive candidates from the
>> +// same source list is as follows:
>> +//
>> +// In the store case, the insns in the group can't be re-ordered over each
>> +// other as they are guaranteed to store to the same location, so we're
>> +// guaranteed not to lose opportunities by doing this.
>> +//
>> +// In the load case, subsequent loads from the same location are either
>> +// redundant (in which case they should have been cleaned up by an earlier
>> +// optimization pass) or there is an intervening aliasing hazard, in which 
>> case
>> +// we can't re-order them anyway, so provided earlier passes have cleaned up
>> +// redundant loads, we shouldn't miss opportunities by doing this.
>> +void
>> +pair_fusion::merge_pairs (insn_list_t &left_list,
>> +                      insn_list_t &right_list,
>> +                      bool load_p,
>> +                      unsigned access_size)
>> +{
>> +  if (dump_file)
>> +    {
>> +      fprintf (dump_file, "merge_pairs [L=%d], cand vecs ", load_p);
>> +      dump_insn_list (dump_file, left_list);
>> +      fprintf (dump_file, " x ");
>> +      dump_insn_list (dump_file, right_list);
>> +      fprintf (dump_file, "\n");
>> +    }
>> +
>> +  auto iter_l = left_list.begin ();
>> +  auto iter_r = right_list.begin ();
>> +
>> +  while (iter_l != left_list.end () && iter_r != right_list.end ())
>> +    {
>> +      auto next_l = std::next (iter_l);
>> +      auto next_r = std::next (iter_r);
>> +      if (**iter_l < **iter_r
>> +      && next_l != left_list.end ()
>> +      && **next_l < **iter_r)
>> +    iter_l = next_l;
>> +      else if (**iter_r < **iter_l
>> +           && next_r != right_list.end ()
>> +           && **next_r < **iter_l)
>> +    iter_r = next_r;
>> +      else if (try_fuse_pair (load_p, access_size, *iter_l, *iter_r))
>> +    {
>> +      left_list.erase (iter_l);
>> +      iter_l = next_l;
>> +      right_list.erase (iter_r);
>> +      iter_r = next_r;
>> +    }
>> +      else if (**iter_l < **iter_r)
>> +    iter_l = next_l;
>> +      else
>> +    iter_r = next_r;
>> +    }
>> +}
>> +// If we emitted tombstone insns for this BB, iterate through the BB
>> +// and remove all the tombstone insns, being sure to reparent any uses
>> +// of mem to previous defs when we do this.
>> +void
>> +pair_fusion::cleanup_tombstones ()
>> +{
>> +  // No need to do anything if we didn't emit a tombstone insn for this BB.
>> +  if (!m_emitted_tombstone)
>> +    return;
>> +
>> +  insn_info *insn = m_bb->head_insn ();
>> +  while (insn)
>> +    {
>> +      insn_info *next = insn->next_nondebug_insn ();
>> +      if (!insn->is_real ()
>> +      || !bitmap_bit_p (&m_tombstone_bitmap, insn->uid ()))
>> +    {
>> +      insn = next;
>> +      continue;
>> +    }
>> +
>> +      auto def = memory_access (insn->defs ());
>> +      auto set = dyn_cast<set_info *> (def);
>> +      if (set && set->has_any_uses ())
>> +    {
>> +      def_info *prev_def = def->prev_def ();
>> +      auto prev_set = dyn_cast<set_info *> (prev_def);
>> +      if (!prev_set)
>> +        gcc_unreachable ();
>> +
>> +      while (set->first_use ())
>> +        crtl->ssa->reparent_use (set->first_use (), prev_set);
>> +    }
>> +
>> +      // Now set has no uses, we can delete it.
>> +      insn_change change (insn, insn_change::DELETE);
>> +      crtl->ssa->change_insn (change);
>> +      insn = next;
>> +    }
>> +}
>> +
>> +template<typename Map>
>> +void
>> +pair_fusion::traverse_base_map (Map &map)
>> +{
>> +  for (auto kv : map)
>> +    {
>> +      const auto &key = kv.first;
>> +      auto &value = kv.second;
>> +      transform_for_base (key.second, value);
>> +    }
>> +}
>> +
>> +void
>> +pair_fusion::transform ()
>> +{
>> +  traverse_base_map (expr_map);
>> +  traverse_base_map (def_map);
>> +}
>> +
>> +// Process our alias_walkers in a round-robin fashion, proceeding until
>> +// nothing more can be learned from alias analysis.
>> +//
>> +// We try to maintain the invariant that if a walker becomes invalid, we
>> +// set its pointer to null.
>> +void
>> +pair_fusion::do_alias_analysis (insn_info *alias_hazards[4],
>> +               alias_walker *walkers[4],
>> +               bool load_p)
>> +{
>> +  const int n_walkers = 2 + (2 * !load_p);
>> +  int budget = pair_mem_alias_check_limit();
>> +
>> +  auto next_walker = [walkers,n_walkers](int current) -> int {
>> +    for (int j = 1; j <= n_walkers; j++)
>> +      {
>> +    int idx = (current + j) % n_walkers;
>> +    if (walkers[idx])
>> +      return idx;
>> +      }
>> +    return -1;
>> +  };
>> +
>> +  int i = -1;
>> +  for (int j = 0; j < n_walkers; j++)
>> +    {
>> +      alias_hazards[j] = nullptr;
>> +      if (!walkers[j])
>> +    continue;
>> +
>> +      if (!walkers[j]->valid ())
>> +    walkers[j] = nullptr;
>> +      else if (i == -1)
>> +    i = j;
>> +    }
>> +
>> +  while (i >= 0)
>> +    {
>> +      int insn_i = i % 2;
>> +      int paired_i = (i & 2) + !insn_i;
>> +      int pair_fst = (i & 2);
>> +      int pair_snd = (i & 2) + 1;
>> +
>> +      if (walkers[i]->conflict_p (budget))
>> +    {
>> +      alias_hazards[i] = walkers[i]->insn ();
>> +
>> +      // We got an aliasing conflict for this {load,store} walker,
>> +      // so we don't need to walk any further.
>> +      walkers[i] = nullptr;
>> +
>> +      // If we have a pair of alias conflicts that prevent
>> +      // forming the pair, stop.  There's no need to do further
>> +      // analysis.
>> +      if (alias_hazards[paired_i]
>> +          && (*alias_hazards[pair_fst] <= *alias_hazards[pair_snd]))
>> +        return;
>> +
>> +      if (!load_p)
>> +        {
>> +          int other_pair_fst = (pair_fst ? 0 : 2);
>> +          int other_paired_i = other_pair_fst + !insn_i;
>> +
>> +          int x_pair_fst = (i == pair_fst) ? i : other_paired_i;
>> +          int x_pair_snd = (i == pair_fst) ? other_paired_i : i;
>> +
>> +          // Similarly, handle the case where we have a {load,store}
>> +          // or {store,load} alias hazard pair that prevents forming
>> +          // the pair.
>> +          if (alias_hazards[other_paired_i]
>> +              && *alias_hazards[x_pair_fst] <= *alias_hazards[x_pair_snd])
>> +            return;
>> +        }
>> +    }
>> +
>> +      if (walkers[i])
>> +    {
>> +      walkers[i]->advance ();
>> +
>> +      if (!walkers[i]->valid ())
>> +        walkers[i] = nullptr;
>> +    }
>> +
>> +      i = next_walker (i);
>> +    }
>> +}
>> +
>> +// Try and actually fuse the pair given by insns I1 and I2.
>> +//
>> +// Here we've done enough analysis to know this is safe, we only
>> +// reject the pair at this stage if either the tuning policy says to,
>> +// or recog fails on the final pair insn.
>> +//
>> +// LOAD_P is true for loads, ACCESS_SIZE gives the access size of each
>> +// candidate insn.  Bit i of WRITEBACK is set if the ith insn (in program
>> +// order) uses writeback.
>> +//
>> +// BASE gives the chosen base candidate for the pair and MOVE_RANGE is
>> +// a singleton range which says where to place the pair.
>> +bool
>> +pair_fusion::fuse_pair (bool load_p,
>> +                    unsigned access_size,
>> +                    int writeback,
>> +                    insn_info *i1, insn_info *i2,
>> +                    base_cand &base,
>> +                    const insn_range_info &move_range)
>> +{
>> +  auto attempt = crtl->ssa->new_change_attempt ();
>> +
>> +  auto make_change = [&attempt](insn_info *insn)
>> +    {
>> +      return crtl->ssa->change_alloc<insn_change> (attempt, insn);
>> +    };
>> +  auto make_delete = [&attempt](insn_info *insn)
>> +    {
>> +      return crtl->ssa->change_alloc<insn_change> (attempt,
>> +                                               insn,
>> +                                               insn_change::DELETE);
>> +    };
>> +
>> +  if (*i1 > *i2)
>> +    return false;
>> +
>> +  insn_info *first = (*i1 < *i2) ? i1 : i2;
>> +  insn_info *second = (first == i1) ? i2 : i1;
>> +
>> +  insn_info *pair_dst = move_range.singleton ();
>> +  gcc_assert (pair_dst);
>> +
>> +  insn_info *insns[2] = { first, second };
>> +
>> +  auto_vec<insn_change *> changes;
>> +  auto_vec<int, 2> tombstone_uids (2);
>> +
>> +  rtx pats[2] = {
>> +    PATTERN (first->rtl ()),
>> +    PATTERN (second->rtl ())
>> +  };
>> +
>> +  // Make copies of the patterns as we might need to refer to the original 
>> RTL
>> +  // later, for example when updating debug uses (which is after we've 
>> updated
>> +  // one or both of the patterns in the candidate insns).
>> +  rtx orig_rtl[2];
>> +  for (int i = 0; i < 2; i++)
>> +    orig_rtl[i] = copy_rtx (pats[i]);
>> +
>> +  use_array input_uses[2] = { first->uses (), second->uses () };
>> +  def_array input_defs[2] = { first->defs (), second->defs () };
>> +
>> +  int changed_insn = -1;
>> +  if (base.from_insn != -1)
>> +    {
>> +      // If we're not already using a shared base, we need
>> +      // to re-write one of the accesses to use the base from
>> +      // the other insn.
>> +      gcc_checking_assert (base.from_insn == 0 || base.from_insn == 1);
>> +      changed_insn = !base.from_insn;
>> +
>> +      rtx base_pat = pats[base.from_insn];
>> +      rtx change_pat = pats[changed_insn];
>> +      rtx base_mem = XEXP (base_pat, load_p);
>> +      rtx change_mem = XEXP (change_pat, load_p);
>> +
>> +      const bool lower_base_p = (insns[base.from_insn] == i1);
>> +      HOST_WIDE_INT adjust_amt = access_size;
>> +      if (!lower_base_p)
>> +    adjust_amt *= -1;
>> +
>> +      rtx change_reg = XEXP (change_pat, !load_p);
>> +      machine_mode mode_for_mem = GET_MODE (change_mem);
>> +      rtx effective_base = drop_writeback (base_mem);
>> +      rtx new_mem = adjust_address_nv (effective_base,
>> +                                   mode_for_mem,
>> +                                   adjust_amt);
>> +      rtx new_set = load_p
>> +    ? gen_rtx_SET (change_reg, new_mem)
>> +    : gen_rtx_SET (new_mem, change_reg);
>> +
>> +      pats[changed_insn] = new_set;
>> +
>> +      auto keep_use = [&](use_info *u)
>> +    {
>> +      return refers_to_regno_p (u->regno (), u->regno () + 1,
>> +                                change_pat, &XEXP (change_pat, load_p));
>> +    };
>> +
>> +      // Drop any uses that only occur in the old address.
>> +      input_uses[changed_insn] = filter_accesses (attempt,
>> +                                              input_uses[changed_insn],
>> +                                              keep_use);
>> +    }
>> +
>> +  rtx writeback_effect = NULL_RTX;
>> +  if (writeback)
>> +    writeback_effect = extract_writebacks (load_p, pats, changed_insn);
>> +
>> +  const auto base_regno = base.def->regno ();
>> +
>> +  if (base.from_insn == -1 && (writeback & 1))
>> +    {
>> +      // If the first of the candidate insns had a writeback form, we'll 
>> need to
>> +      // drop the use of the updated base register from the second insn's 
>> uses.
>> +      //
>> +      // N.B. we needn't worry about the base register occurring as a store
>> +      // operand, as we checked that there was no non-address true 
>> dependence
>> +      // between the insns in try_fuse_pair.
>> +      gcc_checking_assert (find_access (input_uses[1], base_regno));
>> +      input_uses[1] = check_remove_regno_access (attempt,
>> +                                             input_uses[1],
>> +                                             base_regno);
>> +    }
>> +
>> +  // Go through and drop uses that only occur in register notes,
>> +  // as we won't be preserving those.
>> +  for (int i = 0; i < 2; i++)
>> +    {
>> +      auto rti = insns[i]->rtl ();
>> +      if (!REG_NOTES (rti))
>> +    continue;
>> +
>> +      input_uses[i] = remove_note_accesses (attempt, input_uses[i]);
>> +    }
>> +
>> +  // Edge case: if the first insn is a writeback load and the
>> +  // second insn is a non-writeback load which transfers into the base
>> +  // register, then we should drop the writeback altogether as the
>> +  // update of the base register from the second load should prevail.
>> +  //
>> +  // For example:
>> +  //   ldr x2, [x1], #8
>> +  //   ldr x1, [x1]
>> +  //   -->
>> +  //   ldp x2, x1, [x1]
>> +  if (writeback == 1
>> +      && load_p
>> +      && find_access (input_defs[1], base_regno))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file,
>> +             "  pair_mem: i%d has wb but subsequent i%d has non-wb "
>> +             "update of base (r%d), dropping wb\n",
>> +             insns[0]->uid (), insns[1]->uid (), base_regno);
>> +      gcc_assert (writeback_effect);
>> +      writeback_effect = NULL_RTX;
>> +    }
>> +
>> +  // So far the patterns have been in instruction order,
>> +  // now we want them in offset order.
>> +  if (i1 != first)
>> +    std::swap (pats[0], pats[1]);
>> +
>> +  poly_int64 offsets[2];
>> +  for (int i = 0; i < 2; i++)
>> +    {
>> +      rtx mem = XEXP (pats[i], load_p);
>> +      gcc_checking_assert (MEM_P (mem));
>> +      rtx base = strip_offset (XEXP (mem, 0), offsets + i);
>> +      gcc_checking_assert (REG_P (base));
>> +      gcc_checking_assert (base_regno == REGNO (base));
>> +    }
>> +
>> +  // If either of the original insns had writeback, but the resulting pair 
>> insn
>> +  // does not (can happen e.g. in the pair mem  edge case above, or if the 
>> writeback
>> +  // effects cancel out), then drop the def(s) of the base register as
>> +  // appropriate.
>> +  //
>> +  // Also drop the first def in the case that both of the original insns had
>> +  // writeback.  The second def could well have uses, but the first def 
>> should
>> +  // only be used by the second insn (and we dropped that use above).
>> +  for (int i = 0; i < 2; i++)
>> +    if ((!writeback_effect && (writeback & (1 << i)))
>> +    || (i == 0 && writeback == 3))
>> +      input_defs[i] = check_remove_regno_access (attempt,
>> +                                             input_defs[i],
>> +                                             base_regno);
>> +
>> +  // If we don't currently have a writeback pair, and we don't have
>> +  // a load that clobbers the base register, look for a trailing destructive
>> +  // update of the base register and try and fold it in to make this into a
>> +  // writeback pair.
>> +  insn_info *trailing_add = nullptr;
>> +  if (pair_trailing_writeback_p ()
>> +      && !writeback_effect
>> +      && (!load_p || (!refers_to_regno_p (base_regno, base_regno + 1,
>> +                                     XEXP (pats[0], 0), nullptr)
>> +                  && !refers_to_regno_p (base_regno, base_regno + 1,
>> +                                         XEXP (pats[1], 0), nullptr))))
>> +    {
>> +      def_info *add_def;
>> +      trailing_add = find_trailing_add (insns, move_range, writeback,
>> +                                    &writeback_effect,
>> +                                    &add_def, base.def, offsets[0],
>> +                                    access_size);
>> +      if (trailing_add)
>> +    {
>> +      // The def of the base register from the trailing add should prevail.
>> +      input_defs[0] = insert_access (attempt, add_def, input_defs[0]);
>> +      gcc_assert (input_defs[0].is_valid ());
>> +    }
>> +    }
>> +
>> +  // Now that we know what base mem we're going to use, check if it's OK
>> +  // with the pair mem  policy.
>> +  rtx first_mem = XEXP (pats[0], load_p);
>> +  if (pair_mem_ok_policy (first_mem,
>> +                      load_p,
>> +                      GET_MODE (first_mem)))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file, "punting on pair (%d,%d), pair mem  policy says 
>> no\n",
>> +             i1->uid (), i2->uid ());
>> +      return false;
>> +    }
>> +
>> +  rtx reg_notes = combine_reg_notes (first, second, load_p);
>> +
>> +  rtx pair_pat;
>> +
>> +  set_multiword_subreg (first, second, load_p);
>> +
>> +  pair_pat = gen_load_store_pair (pats, writeback_effect, load_p);
>> +  if (pair_pat == NULL_RTX)
>> +    return false;
>> +  insn_change *pair_change = nullptr;
>> +  auto set_pair_pat = [pair_pat,reg_notes](insn_change *change) {
>> +    rtx_insn *rti = change->insn ()->rtl ();
>> +    validate_unshare_change (rti, &PATTERN (rti), pair_pat, true);
>> +    validate_change (rti, &REG_NOTES (rti), reg_notes, true);
>> +  };
>> +
>> +  if (load_p)
>> +    {
>> +      changes.safe_push (make_delete (first));
>> +      pair_change = make_change (second);
>> +      changes.safe_push (pair_change);
>> +
>> +      pair_change->move_range = move_range;
>> +      pair_change->new_defs = merge_access_arrays (attempt,
>> +                                               input_defs[0],
>> +                                               input_defs[1]);
>> +      gcc_assert (pair_change->new_defs.is_valid ());
>> +
>> +      pair_change->new_uses
>> +    = merge_access_arrays (attempt,
>> +                           drop_memory_access (input_uses[0]),
>> +                           drop_memory_access (input_uses[1]));
>> +      gcc_assert (pair_change->new_uses.is_valid ());
>> +      set_pair_pat (pair_change);
>> +    }
>> +  else
>> +    {
>> +      using Action = stp_change_builder::action;
>> +      insn_info *store_to_change = try_repurpose_store (first, second,
>> +                                                    move_range);
>> +      stp_change_builder builder (insns, store_to_change, pair_dst);
>> +      insn_change *change;
>> +      set_info *new_set = nullptr;
>> +      for (; !builder.done (); builder.advance ())
>> +    {
>> +      auto action = builder.get_change ();
>> +      change = (action.type == Action::INSERT)
>> +        ? nullptr : make_change (action.insn);
>> +      switch (action.type)
>> +        {
>> +        case Action::CHANGE:
>> +        {
>> +          set_pair_pat (change);
>> +          change->new_uses = merge_access_arrays (attempt,
>> +                                                  input_uses[0],
>> +                                                  input_uses[1]);
>> +          auto d1 = drop_memory_access (input_defs[0]);
>> +          auto d2 = drop_memory_access (input_defs[1]);
>> +          change->new_defs = merge_access_arrays (attempt, d1, d2);
>> +          gcc_assert (change->new_defs.is_valid ());
>> +          def_info *stp_def = memory_access (change->insn ()->defs ());
>> +          change->new_defs = insert_access (attempt,
>> +                                            stp_def,
>> +                                            change->new_defs);
>> +          gcc_assert (change->new_defs.is_valid ());
>> +          change->move_range = move_range;
>> +          pair_change = change;
>> +          break;
>> +        }
>> +        case Action::TOMBSTONE:
>> +        {
>> +          tombstone_uids.quick_push (change->insn ()->uid ());
>> +          rtx_insn *rti = change->insn ()->rtl ();
>> +          validate_change (rti, &PATTERN (rti), gen_tombstone (), true);
>> +          validate_change (rti, &REG_NOTES (rti), NULL_RTX, true);
>> +          change->new_uses = use_array (nullptr, 0);
>> +          break;
>> +        }
>> +        case Action::INSERT:
>> +        {
>> +          if (dump_file)
>> +            fprintf (dump_file,
>> +                     "  stp: cannot re-purpose candidate stores\n");
>> +
>> +          auto new_insn = crtl->ssa->create_insn (attempt, INSN, pair_pat);
>> +          change = make_change (new_insn);
>> +          change->move_range = move_range;
>> +          change->new_uses = merge_access_arrays (attempt,
>> +                                                  input_uses[0],
>> +                                                  input_uses[1]);
>> +          gcc_assert (change->new_uses.is_valid ());
>> +
>> +          auto d1 = drop_memory_access (input_defs[0]);
>> +          auto d2 = drop_memory_access (input_defs[1]);
>> +          change->new_defs = merge_access_arrays (attempt, d1, d2);
>> +          gcc_assert (change->new_defs.is_valid ());
>> +
>> +          new_set = crtl->ssa->create_set (attempt, new_insn, memory);
>> +          change->new_defs = insert_access (attempt, new_set,
>> +                                            change->new_defs);
>> +          gcc_assert (change->new_defs.is_valid ());
>> +          pair_change = change;
>> +          break;
>> +        }
>> +        case Action::FIXUP_USE:
>> +        {
>> +          // This use now needs to consume memory from our stp.
>> +          if (dump_file)
>> +            fprintf (dump_file,
>> +                     "  stp: changing i%d to use mem from new stp "
>> +                     "(after i%d)\n",
>> +                     action.insn->uid (), pair_dst->uid ());
>> +          change->new_uses = drop_memory_access (change->new_uses);
>> +          gcc_assert (new_set);
>> +          auto new_use = crtl->ssa->create_use (attempt, action.insn,
>> +                                                new_set);
>> +          change->new_uses = insert_access (attempt, new_use,
>> +                                            change->new_uses);
>> +          break;
>> +        }
>> +        }
>> +      changes.safe_push (change);
>> +    }
>> +    }
>> +
>> +  if (trailing_add)
>> +    changes.safe_push (make_delete (trailing_add));
>> +  else if ((writeback & 2) && !writeback_effect)
>> +    {
>> +      // The second insn initially had writeback but now the pair does not,
>> +      // need to update any nondebug uses of the base register def in the
>> +      // second insn.  We'll take care of debug uses later.
>> +      auto def = find_access (insns[1]->defs (), base_regno);
>> +      gcc_assert (def);
>> +      auto set = dyn_cast<set_info *> (def);
>> +      if (set && set->has_nondebug_uses ())
>> +    {
>> +      auto orig_use = find_access (insns[0]->uses (), base_regno);
>> +      for (auto use : set->nondebug_insn_uses ())
>> +        {
>> +          auto change = make_change (use->insn ());
>> +          change->new_uses = check_remove_regno_access (attempt,
>> +                                                        change->new_uses,
>> +                                                        base_regno);
>> +          change->new_uses = insert_access (attempt,
>> +                                            orig_use,
>> +                                            change->new_uses);
>> +          changes.safe_push (change);
>> +        }
>> +    }
>> +    }
>> +
>> +  auto is_changing = insn_is_changing (changes);
>> +  for (unsigned i = 0; i < changes.length (); i++)
>> +    gcc_assert (rtl_ssa::restrict_movement_ignoring (*changes[i], 
>> is_changing));
>> +
>> +  // Check the pair pattern is recog'd.
>> +  if (!rtl_ssa::recog_ignoring (attempt, *pair_change, is_changing))
>> +    {
>> +      if (dump_file)
>> +    fprintf (dump_file, "  failed to form pair, recog failed\n");
>> +
>> +      // Free any reg notes we allocated.
>> +      while (reg_notes)
>> +    {
>> +      rtx next = XEXP (reg_notes, 1);
>> +      free_EXPR_LIST_node (reg_notes);
>> +      reg_notes = next;
>> +    }
>> +      cancel_changes (0);
>> +      return false;
>> +    }
>> +
>> +  gcc_assert (crtl->ssa->verify_insn_changes (changes));
>> +
>> +  // Fix up any debug uses that will be affected by the changes.
>> +  if (MAY_HAVE_DEBUG_INSNS)
>> +    fixup_debug_uses (attempt, insns, orig_rtl, pair_dst, trailing_add,
>> +                  load_p, writeback, writeback_effect, base_regno);
>> +
>> +  confirm_change_group ();
>> +  crtl->ssa->change_insns (changes);
>> +
>> +  gcc_checking_assert (tombstone_uids.length () <= 2);
>> +  for (auto uid : tombstone_uids)
>> +    track_tombstone (uid);
>> +
>> +  return true;
>> +}
>> +
>> +
>> -- 
>> 2.39.3
>>

Reply via email to