Bonjour,

I'm trying to use the generic elliptic brick under the python binding, and I
get some troubles to undertand how to set the tensor for a classical
anisotropic elasticity.

When I set  :

b0 = gf.MdBrick('generic elliptic',mim,mfu,'matrix')
# print the parameter list of the generic elliptic brick
 gf.MdBrick.get(b0, 'param list') # give ('A',)
# print the parameter A
print(gf.MdBrick.get(b0, 'param','A')) # by default the A tensor is set to
identity


I get :
[[ 1.  1.]
 [ 1.  1.]]

This can't define a 4rth order tensor.

I set this way :

b0 = gf.MdBrick('generic elliptic',mim,mfu,'tensor')
# print the parameter list of the generic elliptic brick
 gf.MdBrick.get(b0, 'param list') # give ('A',)
# print the parameter A
print(gf.MdBrick.get(b0, 'param','A')) # by default the A tensor is set to
identity

I get an object that seems to have the good shape : (2,2,2,2)

Is there a way to handle 4rth order tensor in the normailized Voigt basis. I
want use this code in a course so i would like ti get the same formalism.

Best regards.


-- 
Jean-François WITZ
_______________________________________________
Getfem-users mailing list
[email protected]
https://mail.gna.org/listinfo/getfem-users

Reply via email to