Dear Yassine,

Yes, you are right. There is a superconvergence phenomenon in both cases.
I do not see what is the reason, the integration method is correct.
May be, the fact that the mesh is nearly structured. It would be interesting
to make the experiment in a fully non-structured case.

Best regards,

Yves.




Le 16/02/2016 11:05, Yassine ZAIM a écrit :
> Dear Dr. Yves, 
> Thank you so much for your answer and your time. 
>
> I try with "MESH_NOISED = 1;"
> For exemple :
> for "NX = 127; /Number of dof : 16384/" : I found the error_H1
> = /1.239379991943454e-05/
> for "NX = 255; /Number of dof : 65536/" : I found the error_H1
> =/3.083252284962158e-06/
> /Order = Log2(//1.239379991943454e-05///3.083252284962158e-06)=//2.0071./
> Maybe we will have the superconvergence phenomena in the both cases.
>
> ​Dear Thoma​s,
> Thank you so much for your answer and your time. 
>
> For me I work with C++, I don't use any interfaces, because I need to
> do some modifications later. The functions used for computation of
> error are getfem::asm_L2_norm and getfem::asm_H1_norm.
>
> Best regards.
>
>
> 2016-02-16 9:36 GMT+00:00 Thomas Linse <[email protected]
> <mailto:[email protected]>>:
>
>     How did you calculate the L2 and H1 norms? I found "correct"
>     convergence for a similar 1D problem when calculating the norms
>     "by hand" (using Gauss integration), whereas the norms calculated
>     using "gf_compute" from the scilab interface showed a larger
>     convergence rate.
>
>     Maybe "gf_compute" (which callsgetfem::asm_L2_normor dasm_H1_norm)
>     does not use the necessary order of integration?
>
>     Kind regards,
>
>     Thomas
>
>
>     On 16.02.2016 09:59, Yves Renard wrote:
>>
>>     Dear Yassine,
>>
>>     Superconvergence phenomena are quite common when a structured
>>     mesh is used. If you use the option "MESH_NOISED", this should
>>     (unfortunately !) disapear.
>>
>>     Best Regards,
>>
>>     Yves.
>>
>>
>>     Le 15/02/2016 15:01, Yassine ZAIM a écrit :
>>>     Hi,
>>>     I want to ask you if someone has already solved the laplacian
>>>     problem that exists in the tests directory with the Q_1 element
>>>     in 2 dimension. Because I find the order of convergence equal to
>>>     "2" for the L2 and H1 norme. what is not normal.
>>>     Best regards.
>>>
>>>     Bonjour,
>>>     S.v.p j'aimerais savoir si quelqu'un de vous a déjà testé le
>>>     problème de laplacian qui exist dans la répertoire des tests
>>>     avec l'élément Q_1 en dimension 2. J'ai testé ça et je trouve le
>>>     même ordre pour les deux norme L2 et H1 (Ordre(L2) = Ordre(H1) =
>>>     2). Ce qui contredit la théorie.
>>>     Merci d'avance pour vos réponse.
>>>     Cordialement.
>>>
>>>     -- 
>>>     *ZAIM Yassine *
>>>     *PhD Student in Applied Mathematics*
>>>     *
>>>     *
>>>
>>>
>>>     _______________________________________________
>>>     Getfem-users mailing list
>>>     [email protected] <mailto:[email protected]>
>>>     https://mail.gna.org/listinfo/getfem-users
>>
>>
>>     -- 
>>
>>       Yves Renard ([email protected] 
>> <mailto:[email protected]>)       tel : (33) 04.72.43.87.08
>>       Pole de Mathematiques, INSA-Lyon             fax : (33) 04.72.43.85.29
>>       20, rue Albert Einstein
>>       69621 Villeurbanne Cedex, FRANCE
>>       http://math.univ-lyon1.fr/~renard
>>     <http://math.univ-lyon1.fr/%7Erenard>
>>
>>     ---------
>>
>>
>>     _______________________________________________
>>     Getfem-users mailing list
>>     [email protected] <mailto:[email protected]>
>>     https://mail.gna.org/listinfo/getfem-users
>
>
>     _______________________________________________
>     Getfem-users mailing list
>     [email protected] <mailto:[email protected]>
>     https://mail.gna.org/listinfo/getfem-users
>
>
>
>
> -- 
> *ZAIM Yassine *
> *PhD Student in Applied Mathematics*
> *
> *


-- 

  Yves Renard ([email protected])       tel : (33) 04.72.43.87.08
  Pole de Mathematiques, INSA-Lyon             fax : (33) 04.72.43.85.29
  20, rue Albert Einstein
  69621 Villeurbanne Cedex, FRANCE
  http://math.univ-lyon1.fr/~renard

---------

_______________________________________________
Getfem-users mailing list
[email protected]
https://mail.gna.org/listinfo/getfem-users

Reply via email to