Dear Simon,

A priori, you computation seems ok to me. May be apart that you extract mesh vertex indices withgf_mesh_get(magn_mesh, 'pid'); and not the finite element node indices which are generally non-coinciding (use gf_mesh_fem_get instead of gf_mesh_get).

Of course, representing the force density would be simpler (and note that extraction/interpolation of values is easier with the use of interpolation functions. for instancegf_model_get(md, 'interpolation', 'mult_on_u', set_of_points | mf) can directly get you the value of an arbitrary expression on a set of points or on a Lagrange fem).

Best regards,

Yves


Le 24/01/2018 à 10:32, SIMON AMEYE a écrit :

Hi all,

As I was not able to use the contact brick between two meshes, I now try to use another way:

I want to compute the forces at the boundary (dirichlet condition) with my first part.

And then, I want to use those forces on a second finite element analysis.

Everything is ok except I am not able to associate the forces I get with the correct nodes.

I use this code :

% End of the fem computation

gf_model_set(md, 'add generalized Dirichlet condition with multipliers', mim, 'u', mfu, 1,'VECTOR', 'H');

gf_model_get(md, 'solve');

U = gf_model_get(md, 'variable', 'u');

VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 'lambda', 'mu', mfdu);

% Forces recovery (from previous getfem++ thread)

% get the tangent matrix

tangent_matrix = gf_model_get(md, 'tangent_matrix');

% get the multipliers

mult = gf_model_get(md, 'variable', 'mult_on_u');

% mult2 = gf_model_get(md, 'variable', 'mult_on_u');

% get the number of multipliers and DOFs

nb_mult = size(mult,2);

nb_dof = gf_mesh_fem_get(mfu,'nbdof');

% part of the tangent matrix concerning the multipliers

    mult_matrix = zeros(nb_dof,nb_mult);

fori = 1:nb_dof

forj = 1:nb_mult

            mult_matrix(i,j) = tangent_matrix(nb_mult+i,j);

end

end

% computing the nodal forces by multiplying the multipliers

% with the right part of the tangent matrix

    nodalforce = -(mult_matrix*transpose(mult));

% extract the x-, y- components

fori = 0:(size(nodalforce,1)/2)-1

        nodalforce_x(i+1) = nodalforce(2*i+1);

        nodalforce_y(i+1) = nodalforce(2*i+2);

end

% Associate the forces with the nodes

[nodalforce_x,nodalforce_y] = GetTheForce(md,mfu,'mult_on_u');

F = [nodalforce_x' nodalforce_y'];

ID = gf_mesh_get(magn_mesh, 'pid');

Coor = gf_mesh_get(magn_mesh, 'pts',ID)';

Coor = Coor(1:end,:);

% Plot the forces with segments on nodes

gf_plot(mfdu,VM,'deformed_mesh','on', 'deformation',U,'deformation_mf',mfu,'refine', 4, 'deformation_scale',DEFO_SCALE*100*0*mod(i,2));hold on;

plot([Coor2(:,1)';Coor2(:,1)'+F(:,1)'*1e-4],[Coor2(:,2)';Coor2(:,2)'+F(:,2)'*1e-4])

Result :

As you can see with this result, the forces are not well located as there are forces outside the boundary.

(The boundary used for the dirichlet condition is the outside of the mesh)

Do anyone have a solution ?

Thank you again,

Simon

**

cid:[email protected]**

        

**

*SIMON AMEYE*

DQI/DRIA/DSTF/SEPC

Apprenti IFP School

------------------------------------------------------------------------

CENTRE TECHNIQUE VELIZY A /

**


--

  Yves Renard ([email protected])       tel : (33) 04.72.43.87.08
  Pole de Mathematiques, INSA-Lyon             fax : (33) 04.72.43.85.29
  20, rue Albert Einstein
  69621 Villeurbanne Cedex, FRANCE
  http://math.univ-lyon1.fr/~renard

---------

Reply via email to