Dear Yves,


Thank you for your quick answer.

I tried H = [-2 1;0 0] but when the condition I found is not respected, the 
boundary is completely blocked.

It only slides when this condition is respected : A^2=k*A.

For example :



A =

   10.9899   -3.3151

   -3.3151    1.0000



If this property is not true, the boundary is blocked. I came to this 
conclusion trying a lot of combinations.

The problem is that I can't find the relation between the matrix definition and 
the sliding vector.



I want to precise that I use GetFem without having installed the full version 
(basic installation).



I attach my code below.



Simon



rot_mesh = gfMesh('from string', StringMesh);

%% Initialisation
gf_workspace('clear all')
% Numerical parameters
global E_rotor Nu_rotor
E = E_rotor; Nu = Nu_rotor;
lambda = E*Nu/((1+Nu)*(1-2*Nu));
mu = E/(2*(1+Nu));
%% Declaration of the mesh to GetFem
rot_mesh = gfMesh('from string', StringMesh);

%% Setting the var description
mim=gfMeshIm(rot_mesh);  set(mim, 'integ',gfInteg('IM_TRIANGLE(6)'));
mfu=gfMeshFem(rot_mesh,2); set(mfu, 'fem',gfFem('FEM_PK(2,1)'));
mfd=gfMeshFem(rot_mesh); set(mfd, 'fem',gfFem('FEM_PK(2,1)'));
mf0=gfMeshFem(rot_mesh); set(mf0, 'fem',gfFem('FEM_PK(2,0)'));
mfdu=gfMeshFem(rot_mesh); set(mfdu, 'fem',gfFem('FEM_PK_DISCONTINUOUS(2,1)'));

%% Boundary calculation
P=get(rot_mesh, 'pts');
pidlow=find(abs(P(2,:))<1e-6); %the bottom boundary can also be found using 
'LowEdgeNodes' var
flow =get(rot_mesh,'faces from pid',pidlow);
ftop=get(rot_mesh,'faces from pid',(TopEdgeNodes'+1));
%% Assign boundary numbers
LOW_BOUND = 1; TOP_BOUND = 2;
rot_mesh.set_region(LOW_BOUND, flow);
rot_mesh.set_region(TOP_BOUND, ftop);

%% MODEL
md=gf_model('real');
gf_model_set(md, 'add fem variable', 'u', mfu);
gf_model_set(md, 'add initialized data', 'lambda', lambda);
gf_model_set(md, 'add initialized data', 'mu', mu);
gf_model_set(md, 'add isotropic linearized elasticity brick', mim, 'u', 
'lambda', 'mu');
%% Centrifugal force source term
% 2D Centrifugal Force Model : F = Rho * W^2 * Distance_with_center .*[x or 
y].*Projection_On_[x or y]
FXX = get(mfd, 'eval', 
{[num2str(Rho_rotor),'.*',num2str(W),'.^2.*(x.^2+y.^2).^0.5   
.*x./((x.^2+y.^2).^0.5)']});
FYY = get(mfd, 'eval', 
{[num2str(Rho_rotor),'.*',num2str(W),'.^2.*(x.^2+y.^2).^0.5   
.*y./((x.^2+y.^2).^0.5)']});
gf_model_set(md, 'add initialized fem data', 'VolumicData', mfd, [FXX;FYY]);
gf_model_set(md, 'add source term brick', mim, 'u', 'VolumicData');
% Referencing cource terms to the right number
gf_model_set(md, 'add initialized data', ['VolumicData' 
num2str(Init_For_Mag_Term+i)], [Magn(i).PressureX,Magn(i).PressureY]);
       gf_model_set(md, 'add source term brick', mim, 'u', ['VolumicData' 
num2str(Init_For_Mag_Term+i)],Init_For_Mag_Term+i);

%% Sliding dirichlet conditions
% H matrix building : H_top is a projector (Hat) mathix : H^2=k*h and must be 
symetrical
% The H matrix rules the sliding angle of the boundary
x4 = 1;x1 =TopAngle;k = x4+x1;x2 = sqrt(x1)*(-sqrt(k-x1));x3 = x2;
gf_model_set(md, 'add initialized data', 'H_LOW', [0 0;0 1]);
gf_model_set(md, 'add initialized data', 'VECTOR_LOW', [0;0]);
gf_model_set(md, 'add initialized data', 'H_TOP', [x1 x2;x3 x4]);
gf_model_set(md, 'add initialized data', 'VECTOR_TOP', [0;0]);
gf_model_set(md, 'add generalized Dirichlet condition with multipliers', mim, 
'u', mfu, LOW_BOUND,'VECTOR_LOW', 'H_LOW');
gf_model_set(md, 'add generalized Dirichlet condition with multipliers', mim, 
'u', mfu, TOP_BOUND,'VECTOR_TOP', 'H_TOP');

%% Solver
gf_model_get(md, 'solve');
U = gf_model_get(md, 'variable', 'u');
VM = gf_model_get(md, 'compute isotropic linearized Von Mises or Tresca', 'u', 
'lambda', 'mu', mfdu);
Max_VM = max(VM); %Pa
Max_Displacement = max(U); %m







-----Message d'origine-----

De : Yves Renard <[email protected]>

Envoyé : mercredi 31 octobre 2018 09:43

À : SIMON AMEYE - U510180 <[email protected]>

Cc : getfem-users <[email protected]>

Objet : Re: [Getfem-users] Sliding angle for Dirichlet condition



>>> Real sender address / Reelle adresse d expedition :

>>> [email protected] <<<



**********************************************************************





Dear Simon,



A priori, H is not necessarilly a hat matrix. In that case, you can juste take 
an orthognal vector, for instance [-2 1] and set H = [-2 1;0 0]], this should 
work, I think.



Best regards,



Yves





----- Original Message -----

From: "SIMON AMEYE" <[email protected]>

To: "getfem-users" <[email protected]>

Sent: Tuesday, October 30, 2018 1:52:54 PM

Subject: [Getfem-users] Sliding angle for Dirichlet condition



C1-Non sensitive



________________________________

Hi all,



It has been a long time I have tried to understand the H matrix for Dirichlet 
conditions.

I work with a 2D mesh, and I would like my boundary to slide freely according 
to a vector, let's say [1 2].

I think I understood that H needs to be a Hat matrix.

How to do so ?



I tried to construct a hat matrix this way, but the "Angle" is not respected :



x4 = 1;

x1 = x4/(pi/2/Angle);

k = x4+x1;

x2 = sqrt(x1)*(-sqrt(k-x1));

x3 = x2;

gf_model_set(md, 'add initialized data', 'H_TOP', [x1 x2;x3 x4]); 
gf_model_set(md, 'add initialized data', 'VECTOR_TOP', [0;0]); gf_model_set(md, 
'add generalized Dirichlet condition with multipliers', mim, 'u', mfu, 
TOP_BOUND,'VECTOR_TOP', 'H_TOP');



Simon

Reply via email to