Dear Tetsuo
GWFL can do this. Here is an example of modelling a hyperelastic material
in an axisymmetric problem:
md.add_initialized_data("K", E/(3.*(1.-2.*nu))) # Bulk modulus
md.add_initialized_data("mu", E/(2*(1+nu))) # Shear modulus
md.add_macro("F", "Id(2)+Grad_u")
#md.add_macro("F3d",
"[1+Grad_u(1,1),Grad_u(1,2),0;Grad_u(2,1),1+Grad_u(2,2),0;0,0,1]")
md.add_macro("F3d",
"Id(3)+[0,0,0;0,0,0;0,0,1/X(1)]*u(1)+[1,0;0,1;0,0]*Grad_u*[1,0,0;0,1,0]")
md.add_macro("J", "Det(F)*(1+u(1)/X(1))")
md.add_macro("devlogbe", "Deviator(Logm(Left_Cauchy_Green(F3d)))")
md.add_macro("tauH", "K*log(J)")
md.add_nonlinear_generic_assembly_brick(mim,
"2*pi*X(1)*((tauH*Id(2)+tauD2d):(Grad_Test_u*Inv(F))+(tauH+tauD33)/(X(1)+u(1))*Test_u(1))")
Could you try if this works for you?
Best regards
Kostas
On Thu, Dec 17, 2020 at 11:09 AM Tetsuo Koyama <[email protected]> wrote:
> Dear getfem users.
>
> Excuse me for my frequent questions.
> I would like to solve the problem of axisymmetric elements in cylindrical
> coordinate.
>
> I tried to use a GWFL to simulate a two-dimensional mesh as a mesh of
> axisymmetric elements, but I couldn't. As you know, Grad and Div are
> different for cartesian coordinate and cylindrical coordinate systems.
> Is there a good way to solve this problem?
>
> Best Tetsuo.
>