wesm edited a comment on pull request #7442:
URL: https://github.com/apache/arrow/pull/7442#issuecomment-644513681


   To show some simple numbers to show the perf before and after in Python, 
this example has a high selectivity (all but one value selected) and low 
selectivity filter (1/100 and 1/1000):
   
   ```
   import numpy as np
   import pandas as pd
   import pyarrow as pa
   import pyarrow.compute as pc
   
   string_values = pa.array([pd.util.testing.rands(16)
                             for i in range(10000)] * 100)
   double_values = pa.array(np.random.randn(1000000))
   
   all_but_one = np.ones(len(string_values), dtype=bool)
   all_but_one[500000] = False
   
   one_in_100 = np.array(np.random.binomial(1, 0.01, size=1000000), dtype=bool)
   one_in_1000 = np.array(np.random.binomial(1, 0.001, size=1000000), 
dtype=bool)
   ```
   
   before:
   
   ```
   In [2]: timeit pc.filter(double_values, one_in_100)                          
                                                                      
   2.06 ms ± 41.3 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
   
   In [3]: timeit pc.filter(double_values, one_in_1000)                         
                                                                      
   1.82 ms ± 3.69 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [4]: timeit pc.filter(double_values, all_but_one)                         
                                                                      
   5.75 ms ± 15.9 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
   
   In [5]: timeit pc.filter(string_values, one_in_100)                          
                                                                      
   2.23 ms ± 14.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
   
   In [6]: timeit pc.filter(string_values, one_in_1000)                         
                                                                      
   1.85 ms ± 3.92 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [7]: timeit pc.filter(string_values, all_but_one)                         
                                                                      
   11.6 ms ± 183 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
   ```
   
   after
   
   ```
   In [4]: timeit pc.filter(double_values, one_in_100)                          
                     
   1.1 ms ± 7.03 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [5]: timeit pc.filter(double_values, one_in_1000)
   531 µs ± 8.52 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [7]: timeit pc.filter(double_values, all_but_one)                         
                     
   1.83 ms ± 7.36 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [10]: timeit pc.filter(string_values, one_in_100)                         
                                                                      
   1.28 ms ± 3.16 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [11]: timeit pc.filter(string_values, one_in_1000)                        
                                                                      
   561 µs ± 1.69 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
   
   In [12]: timeit pc.filter(string_values, all_but_one)                        
                                                                      
   6.66 ms ± 34.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
   ```
   
   EDIT: updated benchmarks for low-selectivity optimization


----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


Reply via email to