westonpace commented on a change in pull request #12537:
URL: https://github.com/apache/arrow/pull/12537#discussion_r837887327



##########
File path: cpp/src/arrow/compute/exec/tpch_benchmark.cc
##########
@@ -0,0 +1,123 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include <benchmark/benchmark.h>
+
+#include "arrow/compute/cast.h"
+#include "arrow/compute/exec/test_util.h"
+#include "arrow/compute/exec/tpch_node.h"
+#include "arrow/testing/future_util.h"
+#include "arrow/util/make_unique.h"
+
+namespace arrow {
+namespace compute {
+namespace internal {
+
+std::shared_ptr<ExecPlan> Plan_Q1(AsyncGenerator<util::optional<ExecBatch>>* 
sink_gen,
+                                  int scale_factor) {
+  ExecContext* ctx = default_exec_context();
+  *ctx = ExecContext(default_memory_pool(), 
arrow::internal::GetCpuThreadPool());
+  std::shared_ptr<ExecPlan> plan = *ExecPlan::Make(ctx);
+  TpchGen gen = *TpchGen::Make(plan.get(), static_cast<double>(scale_factor));
+
+  ExecNode* lineitem =
+      *gen.Lineitem({"L_QUANTITY", "L_EXTENDEDPRICE", "L_TAX", "L_DISCOUNT", 
"L_SHIPDATE",
+                     "L_RETURNFLAG", "L_LINESTATUS"});
+
+  auto sept_2_1998 = std::make_shared<Date32Scalar>(
+      10471);  // September 2, 1998 is 10471 days after January 1, 1970
+  Expression filter =
+      less_equal(field_ref("L_SHIPDATE"), literal(std::move(sept_2_1998)));
+  FilterNodeOptions filter_opts(filter);
+
+  Expression l_returnflag = field_ref("L_RETURNFLAG");
+  Expression l_linestatus = field_ref("L_LINESTATUS");
+  Expression quantity = field_ref("L_QUANTITY");
+  Expression base_price = field_ref("L_EXTENDEDPRICE");
+
+  std::shared_ptr<Decimal128Scalar> decimal_1 =
+      std::make_shared<Decimal128Scalar>(Decimal128{0, 100}, decimal(12, 2));
+  Expression discount_multiplier =
+      call("subtract", {literal(decimal_1), field_ref("L_DISCOUNT")});
+  Expression tax_multiplier = call("add", {literal(decimal_1), 
field_ref("L_TAX")});
+  Expression disc_price =
+      call("multiply", {field_ref("L_EXTENDEDPRICE"), discount_multiplier});
+  Expression charge =
+      call("multiply",
+           {call("cast",
+                 {call("multiply", {field_ref("L_EXTENDEDPRICE"), 
discount_multiplier})},
+                 compute::CastOptions::Unsafe(decimal(12, 2))),
+            tax_multiplier});
+  Expression discount = field_ref("L_DISCOUNT");
+
+  std::vector<Expression> projection_list = {l_returnflag, l_linestatus, 
quantity,
+                                             base_price,   disc_price,   
charge,
+                                             quantity,     base_price,   
discount};
+  std::vector<std::string> project_names = {
+      "l_returnflag", "l_linestatus", "sum_qty",   "sum_base_price", 
"sum_disc_price",
+      "sum_charge",   "avg_qty",      "avg_price", "avg_disc"};
+  ProjectNodeOptions project_opts(std::move(projection_list), 
std::move(project_names));
+
+  ScalarAggregateOptions sum_opts = ScalarAggregateOptions::Defaults();
+  CountOptions count_opts(CountOptions::CountMode::ALL);
+  std::vector<arrow::compute::internal::Aggregate> aggs = {
+      {"hash_sum", &sum_opts},  {"hash_sum", &sum_opts},    {"hash_sum", 
&sum_opts},
+      {"hash_sum", &sum_opts},  {"hash_mean", &sum_opts},   {"hash_mean", 
&sum_opts},
+      {"hash_mean", &sum_opts}, {"hash_count", &count_opts}};
+
+  std::vector<FieldRef> to_aggregate = {"sum_qty",    "sum_base_price", 
"sum_disc_price",
+                                        "sum_charge", "avg_qty",        
"avg_price",
+                                        "avg_disc",   "sum_qty"};
+
+  std::vector<std::string> names = {"sum_qty",    "sum_base_price", 
"sum_disc_price",
+                                    "sum_charge", "avg_qty",        
"avg_price",
+                                    "avg_disc",   "count_order"};
+
+  std::vector<FieldRef> keys = {"l_returnflag", "l_linestatus"};
+  AggregateNodeOptions agg_opts(aggs, to_aggregate, names, keys);
+
+  SortKey l_returnflag_key("l_returnflag");
+  SortKey l_linestatus_key("l_linestatus");
+  SortOptions sort_opts({l_returnflag_key, l_linestatus_key});
+  OrderBySinkNodeOptions order_by_opts(sort_opts, sink_gen);
+
+  Declaration filter_decl("filter", {Declaration::Input(lineitem)}, 
filter_opts);
+  Declaration project_decl("project", project_opts);
+  Declaration aggregate_decl("aggregate", agg_opts);
+  Declaration orderby_decl("order_by_sink", order_by_opts);
+
+  Declaration q1 =
+      Declaration::Sequence({filter_decl, project_decl, aggregate_decl, 
orderby_decl});
+  std::ignore = *q1.AddToPlan(plan.get());
+  return plan;
+}
+
+static void BM_Tpch_Q1(benchmark::State& st) {
+  for (auto _ : st) {
+    st.PauseTiming();
+    AsyncGenerator<util::optional<ExecBatch>> sink_gen;
+    std::shared_ptr<ExecPlan> plan = Plan_Q1(&sink_gen, 
static_cast<int>(st.range(0)));
+    st.ResumeTiming();
+    auto fut = StartAndCollect(plan.get(), sink_gen);
+    auto res = *fut.MoveResult();
+  }
+}

Review comment:
       It makes sense in the same way the total time makes sense but it is hard 
to draw any conclusions from such a number.  For example, we can't easily 
compare it with our parsing & decoding times to know if our query is an order 
of magnitude slower or faster than, for example, reading a CSV file or reading 
a parquet file.
   
   If we want, for example, 1GiBps throughout through some system then it would 
be nice to get a general sense for which parts of the system will be too slow 
or the most likely bottlenecks.




-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to