westonpace commented on code in PR #12590:
URL: https://github.com/apache/arrow/pull/12590#discussion_r852545495


##########
cpp/src/arrow/python/udf.cc:
##########
@@ -0,0 +1,125 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements.  See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership.  The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License.  You may obtain a copy of the License at
+//
+//   http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied.  See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+#include "arrow/python/udf.h"
+
+#include <cstddef>
+#include <memory>
+#include <sstream>
+
+#include "arrow/compute/function.h"
+#include "arrow/python/common.h"
+
+namespace arrow {
+
+namespace py {
+
+Status ExecuteFunction(const compute::ExecBatch& batch, PyObject* function,
+                       const compute::OutputType& exp_out_type, Datum* out) {
+  size_t num_args = batch.values.size();
+  PyObject* arg_tuple = PyTuple_New(num_args);
+  // wrap exec_batch objects into Python objects based on the datum type
+  for (size_t arg_id = 0; arg_id < num_args; arg_id++) {
+    switch (batch[arg_id].kind()) {
+      case Datum::SCALAR: {
+        auto c_data = batch[arg_id].scalar();
+        PyObject* data = wrap_scalar(c_data);
+        PyTuple_SetItem(arg_tuple, arg_id, data);
+        break;
+      }
+      case Datum::ARRAY: {
+        auto c_data = batch[arg_id].make_array();
+        PyObject* data = wrap_array(c_data);
+        PyTuple_SetItem(arg_tuple, arg_id, data);
+        break;
+      }
+      default:
+        return Status::NotImplemented(
+            "User-defined-functions are not supported for the datum kind ",
+            batch[arg_id].kind());
+    }
+  }
+  // call to Python executing the function
+  PyObject* result;
+  auto st = SafeCallIntoPython([&]() -> Status {
+    result = PyObject_CallObject(function, arg_tuple);
+    return CheckPyError();
+  });
+  RETURN_NOT_OK(st);
+  if (result == nullptr) {
+    return Status::ExecutionError("Output is null, but expected an array");
+  }
+  // wrapping the output for expected output type
+  if (is_scalar(result)) {
+    ARROW_ASSIGN_OR_RAISE(auto val, unwrap_scalar(result));
+    if (!exp_out_type.type()->Equals(val->type)) {
+      return Status::Invalid("Expected output type, ", 
exp_out_type.type()->name(),
+                             ", but function returned type ", 
val->type->name());
+    }
+    *out = Datum(val);
+    return Status::OK();
+  } else if (is_array(result)) {
+    ARROW_ASSIGN_OR_RAISE(auto val, unwrap_array(result));
+    if (!exp_out_type.type()->Equals(val->type())) {
+      return Status::Invalid("Expected output type, ", 
exp_out_type.type()->name(),
+                             ", but function returned type ", 
val->type()->name());
+    }

Review Comment:
   I think the concern is that you have two identical blocks:
   ```
       if (!exp_out_type.type()->Equals(val->type())) {
         return Status::Invalid("Expected output type, ", 
exp_out_type.type()->name(),
                                ", but function returned type ", 
val->type()->name());
       }
   ```
   ...and then again on line 69.  Instead you could make a helper function...
   
   ```
   Status CheckOutputType(const DataType& expected, const DataType& actual) {
       if (!expected.Equals(actual)) {
         return Status::Invalid("Expected output type, ", expected.name(),
                                ", but function returned type ", actual.name());
       }
       return Status::OK();
   }
   ...
   else if (is_scalar(result)) {
       ARROW_ASSIGN_OR_RAISE(auto val, unwrap_scalar(result));
       return CheckOutputType(*exp_out_type, *val->type);
   } else if (is_array(result)) {
       ARROW_ASSIGN_OR_RAISE(auto val, unwrap_array(result));
       return CheckOutputType(val->type());
   }
   ```



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to