alamb commented on code in PR #2516:
URL: https://github.com/apache/arrow-datafusion/pull/2516#discussion_r873628173


##########
datafusion/physical-expr/src/aggregate/sum.rs:
##########
@@ -262,98 +249,83 @@ fn sum_decimal_with_diff_scale(
     }
 }
 
+macro_rules! downcast_arg {
+    ($ARG:expr, $NAME:expr, $ARRAY_TYPE:ident) => {{
+        $ARG.as_any().downcast_ref::<$ARRAY_TYPE>().ok_or_else(|| {
+            DataFusionError::Internal(format!(
+                "could not cast {} to {}",
+                $NAME,
+                type_name::<$ARRAY_TYPE>()
+            ))
+        })?
+    }};
+}
+
+macro_rules! union_arrays {
+    ($LHS: expr, $RHS: expr, $DTYPE: expr, $ARR_DTYPE: ident, $NAME: expr) => 
{{
+        let lhs_casted = &cast(&$LHS.to_array(), $DTYPE)?;
+        let rhs_casted = &cast(&$RHS.to_array(), $DTYPE)?;
+        let lhs_prim_array = downcast_arg!(lhs_casted, $NAME, $ARR_DTYPE);
+        let rhs_prim_array = downcast_arg!(rhs_casted, $NAME, $ARR_DTYPE);
+
+        let chained = lhs_prim_array
+            .iter()
+            .chain(rhs_prim_array.iter())
+            .collect::<$ARR_DTYPE>();
+
+        Arc::new(chained)
+    }};
+}
+
 pub(crate) fn sum(lhs: &ScalarValue, rhs: &ScalarValue) -> Result<ScalarValue> 
{
-    Ok(match (lhs, rhs) {
-        (ScalarValue::Decimal128(v1, p1, s1), ScalarValue::Decimal128(v2, p2, 
s2)) => {
+    let result = match (lhs.get_datatype(), rhs.get_datatype()) {
+        (DataType::Decimal(p1, s1), DataType::Decimal(p2, s2)) => {
             let max_precision = p1.max(p2);
-            if s1.eq(s2) {
-                // s1 = s2
-                sum_decimal(v1, v2, max_precision, s1)
-            } else if s1.gt(s2) {
-                // s1 > s2
-                sum_decimal_with_diff_scale(v1, v2, max_precision, s1, s2)
-            } else {
-                // s1 < s2
-                sum_decimal_with_diff_scale(v2, v1, max_precision, s2, s1)
+
+            match (lhs, rhs) {
+                (
+                    ScalarValue::Decimal128(v1, _, _),
+                    ScalarValue::Decimal128(v2, _, _),
+                ) => {
+                    Ok(if s1.eq(&s2) {
+                        // s1 = s2
+                        sum_decimal(v1, v2, &max_precision, &s1)
+                    } else if s1.gt(&s2) {
+                        // s1 > s2
+                        sum_decimal_with_diff_scale(v1, v2, &max_precision, 
&s1, &s2)
+                    } else {
+                        // s1 < s2
+                        sum_decimal_with_diff_scale(v2, v1, &max_precision, 
&s2, &s1)
+                    })
+                }
+                _ => Err(DataFusionError::Internal(
+                    "Internal state error on sum decimals ".to_string(),
+                )),
             }
         }
-        // float64 coerces everything to f64
-        (ScalarValue::Float64(lhs), ScalarValue::Float64(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::Float32(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::Int64(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::Int32(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::Int16(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::Int8(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
+        (DataType::Float64, _) | (_, DataType::Float64) => {
+            let data: ArrayRef =
+                union_arrays!(lhs, rhs, &DataType::Float64, Float64Array, 
"f64");
+            sum_batch(&data, &arrow::datatypes::DataType::Float64)
         }
-        (ScalarValue::Float64(lhs), ScalarValue::UInt64(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::UInt32(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::UInt16(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        (ScalarValue::Float64(lhs), ScalarValue::UInt8(rhs)) => {
-            typed_sum!(lhs, rhs, Float64, f64)
-        }
-        // float32 has no cast
-        (ScalarValue::Float32(lhs), ScalarValue::Float32(rhs)) => {
-            typed_sum!(lhs, rhs, Float32, f32)
-        }
-        // u64 coerces u* to u64
-        (ScalarValue::UInt64(lhs), ScalarValue::UInt64(rhs)) => {
-            typed_sum!(lhs, rhs, UInt64, u64)
+        (DataType::Float32, _) | (_, DataType::Float32) => {
+            let data: ArrayRef =
+                union_arrays!(lhs, rhs, &DataType::Float32, Float32Array, 
"f32");

Review Comment:
   I am torn -- basically I worry that adding the common math functions to 
`ScalarValue` will result in them being used more (and they are very slow). See 
more discussion on  
https://github.com/apache/arrow-datafusion/pull/1525#pullrequestreview-847147545
   
   However, if the alternative is a bunch of replicated code over the codebase, 
consolidating that all into ScalarValue seems like a much better outcome



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to