comphead commented on code in PR #2516:
URL: https://github.com/apache/arrow-datafusion/pull/2516#discussion_r879159675
##########
datafusion/physical-expr/src/aggregate/sum.rs:
##########
@@ -262,98 +249,83 @@ fn sum_decimal_with_diff_scale(
}
}
+macro_rules! downcast_arg {
+ ($ARG:expr, $NAME:expr, $ARRAY_TYPE:ident) => {{
+ $ARG.as_any().downcast_ref::<$ARRAY_TYPE>().ok_or_else(|| {
+ DataFusionError::Internal(format!(
+ "could not cast {} to {}",
+ $NAME,
+ type_name::<$ARRAY_TYPE>()
+ ))
+ })?
+ }};
+}
+
+macro_rules! union_arrays {
+ ($LHS: expr, $RHS: expr, $DTYPE: expr, $ARR_DTYPE: ident, $NAME: expr) =>
{{
+ let lhs_casted = &cast(&$LHS.to_array(), $DTYPE)?;
+ let rhs_casted = &cast(&$RHS.to_array(), $DTYPE)?;
+ let lhs_prim_array = downcast_arg!(lhs_casted, $NAME, $ARR_DTYPE);
+ let rhs_prim_array = downcast_arg!(rhs_casted, $NAME, $ARR_DTYPE);
+
+ let chained = lhs_prim_array
+ .iter()
+ .chain(rhs_prim_array.iter())
+ .collect::<$ARR_DTYPE>();
+
+ Arc::new(chained)
+ }};
+}
+
pub(crate) fn sum(lhs: &ScalarValue, rhs: &ScalarValue) -> Result<ScalarValue>
{
- Ok(match (lhs, rhs) {
- (ScalarValue::Decimal128(v1, p1, s1), ScalarValue::Decimal128(v2, p2,
s2)) => {
+ let result = match (lhs.get_datatype(), rhs.get_datatype()) {
+ (DataType::Decimal(p1, s1), DataType::Decimal(p2, s2)) => {
let max_precision = p1.max(p2);
- if s1.eq(s2) {
- // s1 = s2
- sum_decimal(v1, v2, max_precision, s1)
- } else if s1.gt(s2) {
- // s1 > s2
- sum_decimal_with_diff_scale(v1, v2, max_precision, s1, s2)
- } else {
- // s1 < s2
- sum_decimal_with_diff_scale(v2, v1, max_precision, s2, s1)
+
+ match (lhs, rhs) {
+ (
+ ScalarValue::Decimal128(v1, _, _),
+ ScalarValue::Decimal128(v2, _, _),
+ ) => {
+ Ok(if s1.eq(&s2) {
+ // s1 = s2
+ sum_decimal(v1, v2, &max_precision, &s1)
+ } else if s1.gt(&s2) {
+ // s1 > s2
+ sum_decimal_with_diff_scale(v1, v2, &max_precision,
&s1, &s2)
+ } else {
+ // s1 < s2
+ sum_decimal_with_diff_scale(v2, v1, &max_precision,
&s2, &s1)
+ })
+ }
+ _ => Err(DataFusionError::Internal(
+ "Internal state error on sum decimals ".to_string(),
+ )),
}
}
- // float64 coerces everything to f64
- (ScalarValue::Float64(lhs), ScalarValue::Float64(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::Float32(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::Int64(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::Int32(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::Int16(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::Int8(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
+ (DataType::Float64, _) | (_, DataType::Float64) => {
+ let data: ArrayRef =
+ union_arrays!(lhs, rhs, &DataType::Float64, Float64Array,
"f64");
+ sum_batch(&data, &arrow::datatypes::DataType::Float64)
}
- (ScalarValue::Float64(lhs), ScalarValue::UInt64(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::UInt32(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::UInt16(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- (ScalarValue::Float64(lhs), ScalarValue::UInt8(rhs)) => {
- typed_sum!(lhs, rhs, Float64, f64)
- }
- // float32 has no cast
- (ScalarValue::Float32(lhs), ScalarValue::Float32(rhs)) => {
- typed_sum!(lhs, rhs, Float32, f32)
- }
- // u64 coerces u* to u64
- (ScalarValue::UInt64(lhs), ScalarValue::UInt64(rhs)) => {
- typed_sum!(lhs, rhs, UInt64, u64)
+ (DataType::Float32, _) | (_, DataType::Float32) => {
+ let data: ArrayRef =
+ union_arrays!(lhs, rhs, &DataType::Float32, Float32Array,
"f32");
Review Comment:
Thanks @waynexia for your response.
I think we already have similar coercion in `type_coercion.rs`
```
/// Returns the data types that each argument must be coerced to match
/// `signature`.
///
/// See the module level documentation for more detail on coercion.
pub fn data_types(
current_types: &[DataType],
signature: &Signature,
) -> Result<Vec<DataType>> {
```
Imho `AggregateFunction::Sum => sum_return_type(&coerced_data_types[0]),`
already does the proposed solution.
I'm still afraid the problem is not in the result type coercion but how to
do operation with underlying values using correct datatypes without boilerplate.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]