kmitchener opened a new issue, #3402:
URL: https://github.com/apache/arrow-datafusion/issues/3402
**Is your feature request related to a problem or challenge? Please describe
what you are trying to do.**
A clear and concise description of what the problem is. Ex. I'm always
frustrated when [...]
(This section helps Arrow developers understand the context and *why* for
this feature, in addition to the *what*)
Take TPC-H q6 for example.
Plan prior to simplification:
* has a strange "AND true" clause in the ParquetExec
* not able to push l_discount down into the ParquetExec
```
❯ explain select
sum(l_extendedprice * l_discount) as revenue
from
lineitem
where
l_shipdate >= date '1994-01-01'
and l_shipdate < date '1995-01-01'
and l_discount between 0.06 - 0.01 and 0.06 + 0.01
and l_quantity < 24;
+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan
|
+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| logical_plan | Projection: #SUM(lineitem.l_extendedprice *
lineitem.l_discount) AS revenue
|
| | Aggregate: groupBy=[[]],
aggr=[[SUM(#lineitem.l_extendedprice * #lineitem.l_discount)]]
|
| | Filter: #lineitem.l_shipdate >= Date32("8766") AND
#lineitem.l_shipdate < Date32("9131") AND #lineitem.l_discount BETWEEN
Float64(0.049999999999999996) AND Float64(0.06999999999999999) AND
#lineitem.l_quantity < Decimal128(Some(2400),15,2)
|
| | TableScan: lineitem projection=[l_quantity,
l_extendedprice, l_discount, l_shipdate], partial_filters=[#lineitem.l_shipdate
>= Date32("8766"), #lineitem.l_shipdate < Date32("9131"), #lineitem.l_discount
BETWEEN Float64(0.049999999999999996) AND Float64(0.06999999999999999),
#lineitem.l_quantity < Decimal128(Some(2400),15,2)] |
| physical_plan | ProjectionExec: expr=[SUM(lineitem.l_extendedprice *
lineitem.l_discount)@0 as revenue]
|
| | AggregateExec: mode=Final, gby=[],
aggr=[SUM(lineitem.l_extendedprice * lineitem.l_discount)]
|
| | CoalescePartitionsExec
|
| | AggregateExec: mode=Partial, gby=[],
aggr=[SUM(lineitem.l_extendedprice * lineitem.l_discount)]
|
| | CoalesceBatchesExec: target_batch_size=4096
|
| | FilterExec: l_shipdate@3 >= 8766 AND
l_shipdate@3 < 9131 AND CAST(l_discount@2 AS Decimal128(30, 15)) >=
CAST(0.049999999999999996 AS Decimal128(30, 15)) AND CAST(l_discount@2 AS
Decimal128(30, 15)) <= CAST(0.06999999999999999 AS Decimal128(30, 15)) AND
l_quantity@0 < Some(2400),15,2 |
| | RepartitionExec:
partitioning=RoundRobinBatch(20)
|
| | ParquetExec: limit=None,
partitions=[home/kmitchener/dev/arrow-datafusion/benchmarks/data-parquet/lineitem/part-0.parquet],
predicate=l_shipdate_max@0 >= 8766 AND l_shipdate_min@1 < 9131 AND true AND
l_quantity_min@2 < Some(2400),15,2, projection=[l_quantity, l_extendedprice,
l_discount, l_shipdate] |
| |
|
+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
```
**Describe the solution you'd like**
A clear and concise description of what you want to happen.
Convert `between` expression into >= and <= expressions and there is more
opportunity for further optimize it in the logical plan.
It results in a better plan overall, with more predicates pushed down to the
tablescan.
```
+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| plan_type | plan
|
+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
| logical_plan | Projection: #SUM(lineitem.l_extendedprice *
lineitem.l_discount) AS revenue
|
| | Aggregate: groupBy=[[]],
aggr=[[SUM(#lineitem.l_extendedprice * #lineitem.l_discount)]]
|
| | Filter: #lineitem.l_shipdate >= Date32("8766") AND
#lineitem.l_shipdate < Date32("9131") AND CAST(#lineitem.l_discount AS
Decimal128(30, 15)) >= CAST(Float64(0.049999999999999996) AS Decimal128(30,
15)) AND CAST(#lineitem.l_discount AS Decimal128(30, 15)) <=
CAST(Float64(0.06999999999999999) AS Decimal128(30, 15)) AND
#lineitem.l_quantity < Decimal128(Some(2400),15,2)
|
| | TableScan: lineitem projection=[l_quantity,
l_extendedprice, l_discount, l_shipdate], partial_filters=[#lineitem.l_shipdate
>= Date32("8766"), #lineitem.l_shipdate < Date32("9131"), #lineitem.l_discount
>= Float64(0.049999999999999996), #lineitem.l_discount <=
Float64(0.06999999999999999), #lineitem.l_quantity <
Decimal128(Some(2400),15,2)]
|
| physical_plan | ProjectionExec: expr=[SUM(lineitem.l_extendedprice *
lineitem.l_discount)@0 as revenue]
|
| | AggregateExec: mode=Final, gby=[],
aggr=[SUM(lineitem.l_extendedprice * lineitem.l_discount)]
|
| | CoalescePartitionsExec
|
| | AggregateExec: mode=Partial, gby=[],
aggr=[SUM(lineitem.l_extendedprice * lineitem.l_discount)]
|
| | CoalesceBatchesExec: target_batch_size=4096
|
| | FilterExec: l_shipdate@3 >= 8766 AND
l_shipdate@3 < 9131 AND CAST(l_discount@2 AS Decimal128(30, 15)) >=
CAST(0.049999999999999996 AS Decimal128(30, 15)) AND CAST(l_discount@2 AS
Decimal128(30, 15)) <= CAST(0.06999999999999999 AS Decimal128(30, 15)) AND
l_quantity@0 < Some(2400),15,2
|
| | RepartitionExec:
partitioning=RoundRobinBatch(20)
|
| | ParquetExec: limit=None,
partitions=[home/kmitchener/dev/arrow-datafusion/benchmarks/data-parquet/lineitem/part-0.parquet],
predicate=l_shipdate_max@0 >= 8766 AND l_shipdate_min@1 < 9131 AND
CAST(l_discount_max@2 AS Decimal128(30, 15)) >= CAST(0.049999999999999996 AS
Decimal128(30, 15)) AND CAST(l_discount_min@3 AS Decimal128(30, 15)) <=
CAST(0.06999999999999999 AS Decimal128(30, 15)) AND l_quantity_min@4 <
Some(2400),15,2, projection=[l_quantity, l_extendedprice, l_discount,
l_shipdate] |
| |
|
+---------------+----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------+
```
**Describe alternatives you've considered**
A clear and concise description of any alternative solutions or features
you've considered.
**Additional context**
Add any other context or screenshots about the feature request here.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]