rtpsw commented on code in PR #14682:
URL: https://github.com/apache/arrow/pull/14682#discussion_r1064040160
##########
python/pyarrow/src/arrow/python/udf.cc:
##########
@@ -105,21 +192,109 @@ Status RegisterScalarFunction(PyObject* user_function,
ScalarUdfWrapperCallback
}
compute::OutputType output_type(options.output_type);
auto udf_data = std::make_shared<PythonUdf>(
- wrapper, std::make_shared<OwnedRefNoGIL>(user_function),
options.output_type);
+ std::make_shared<OwnedRefNoGIL>(user_function), wrapper,
+ TypeHolder::FromTypes(options.input_types), options.output_type);
compute::ScalarKernel kernel(
compute::KernelSignature::Make(std::move(input_types),
std::move(output_type),
options.arity.is_varargs),
- PythonUdfExec);
+ PythonUdfExec, kernel_init);
kernel.data = std::move(udf_data);
kernel.mem_allocation = compute::MemAllocation::NO_PREALLOCATE;
kernel.null_handling = compute::NullHandling::COMPUTED_NO_PREALLOCATE;
RETURN_NOT_OK(scalar_func->AddKernel(std::move(kernel)));
- auto registry = compute::GetFunctionRegistry();
+ if (registry == NULLPTR) {
+ registry = compute::GetFunctionRegistry();
+ }
RETURN_NOT_OK(registry->AddFunction(std::move(scalar_func)));
return Status::OK();
}
-} // namespace py
+} // namespace
+Status RegisterScalarFunction(PyObject* user_function, UdfWrapperCallback
wrapper,
+ const UdfOptions& options,
+ compute::FunctionRegistry* registry) {
+ return RegisterUdf(
+ user_function,
+ PythonUdfKernelInit{std::make_shared<OwnedRefNoGIL>(user_function)},
wrapper,
+ options, registry);
+}
+
+Status RegisterTabularFunction(PyObject* user_function, UdfWrapperCallback
wrapper,
+ const UdfOptions& options,
+ compute::FunctionRegistry* registry) {
+ if (options.arity.num_args != 0 || options.arity.is_varargs) {
+ return Status::NotImplemented("tabular function of non-null arity");
+ }
+ if (options.output_type->id() != Type::type::STRUCT) {
+ return Status::Invalid("tabular function with non-struct output");
+ }
+ return RegisterUdf(
+ user_function,
+ PythonTableUdfKernelInit{std::make_shared<OwnedRefNoGIL>(user_function),
wrapper},
+ wrapper, options, registry);
+}
+
+Result<std::shared_ptr<RecordBatchReader>> CallTabularFunction(
+ const std::string& func_name, const std::vector<Datum>& args,
+ compute::FunctionRegistry* registry) {
+ if (args.size() != 0) {
+ return Status::NotImplemented("non-empty arguments to tabular function");
+ }
+ if (registry == NULLPTR) {
+ registry = compute::GetFunctionRegistry();
+ }
+ ARROW_ASSIGN_OR_RAISE(auto func, registry->GetFunction(func_name));
+ if (func->kind() != compute::Function::SCALAR) {
+ return Status::Invalid("tabular function of non-scalar kind");
+ }
+ auto arity = func->arity();
+ if (arity.num_args != 0 || arity.is_varargs) {
+ return Status::NotImplemented("tabular function of non-null arity");
+ }
+ auto kernels =
+
arrow::internal::checked_pointer_cast<compute::ScalarFunction>(func)->kernels();
+ if (kernels.size() != 1) {
+ return Status::NotImplemented("tabular function with non-single kernel");
+ }
+ const compute::ScalarKernel* kernel = kernels[0];
+ auto out_type = kernel->signature->out_type();
+ if (out_type.kind() != compute::OutputType::FIXED) {
+ return Status::Invalid("tabular kernel of non-fixed kind");
+ }
+ auto datatype = out_type.type();
+ if (datatype->id() != Type::type::STRUCT) {
+ return Status::Invalid("tabular kernel with non-struct output");
+ }
+ auto struct_type =
arrow::internal::checked_cast<StructType*>(datatype.get());
+ auto schema = ::arrow::schema(struct_type->fields());
+ std::vector<TypeHolder> in_types;
+ ARROW_ASSIGN_OR_RAISE(auto func_exec,
+ GetFunctionExecutor(func_name, in_types, NULLPTR,
registry));
+ auto next_func =
+ [schema,
+ func_exec = std::move(func_exec)]() ->
Result<std::shared_ptr<RecordBatch>> {
+ std::vector<Datum> args;
+ // passed_length of -1 or 0 with args.size() of 0 leads to an empty
ExecSpanIterator
+ // in exec.cc and to never invoking the source function, so 1 is passed
instead
+ ARROW_ASSIGN_OR_RAISE(auto datum, func_exec->Execute(args,
/*passed_length=*/1));
Review Comment:
Good point. This statement is true for the recent commit in this PR. but it
is not inherently true for UDTFs, since one can imagine a UDTF that respects an
upper limit on the size of batches it outputs. So, I think we should document
this statement and create an issue to fix this later.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]