alamb commented on code in PR #5151:
URL: https://github.com/apache/arrow-datafusion/pull/5151#discussion_r1094909934


##########
datafusion/physical-expr/src/expressions/binary.rs:
##########
@@ -1565,6 +1660,61 @@ mod tests {
         Ok(())
     }
 
+    #[test]
+    fn plus_op_scalar() -> Result<()> {
+        let schema = Schema::new(vec![Field::new("a", DataType::Int32, 
false)]);
+        let a = Int32Array::from(vec![1, 2, 3, 4, 5]);
+
+        apply_arithmetic_scalar(
+            Arc::new(schema),
+            vec![Arc::new(a)],
+            Operator::Plus,
+            ScalarValue::Int32(Some(1)),
+            Arc::new(Int32Array::from(vec![2, 3, 4, 5, 6])),
+        )?;
+
+        Ok(())
+    }
+
+    #[test]
+    fn plus_op_dict_scalar() -> Result<()> {
+        let schema = Schema::new(vec![Field::new(
+            "a",
+            DataType::Dictionary(Box::new(DataType::Int8), 
Box::new(DataType::Int32)),
+            true,
+        )]);
+
+        let mut dict_builder = PrimitiveDictionaryBuilder::<Int8Type, 
Int32Type>::new();
+
+        dict_builder.append(1)?;
+        dict_builder.append_null();
+        dict_builder.append(2)?;
+        dict_builder.append(5)?;
+
+        let a = dict_builder.finish();
+
+        let mut dict_builder = PrimitiveDictionaryBuilder::<Int8Type, 
Int32Type>::new();
+
+        dict_builder.append(2)?;

Review Comment:
   👍 



##########
datafusion/physical-expr/src/expressions/binary.rs:
##########
@@ -904,6 +977,7 @@ impl BinaryExpr {
         scalar: &ScalarValue,
     ) -> Result<Option<Result<ArrayRef>>> {
         let bool_type = &DataType::Boolean;
+        let left_type = array.data_type();

Review Comment:
   Is there any reason to pass in `left_type` to the 
`binary_primitive_array_op_dyn_scalar!` (as it already gets `array` maybe it 
could call `array.data_type()` directly when needed)?
   
   Not that I see anything wrong with this, but I was curious



##########
datafusion/expr/src/type_coercion/binary.rs:
##########
@@ -439,6 +448,12 @@ fn both_numeric_or_null_and_numeric(lhs_type: &DataType, 
rhs_type: &DataType) ->
     match (lhs_type, rhs_type) {
         (_, DataType::Null) => is_numeric(lhs_type),
         (DataType::Null, _) => is_numeric(rhs_type),
+        (DataType::Dictionary(_, value_type), _) => {
+            is_numeric(value_type) && is_numeric(rhs_type)
+        }
+        (_, DataType::Dictionary(_, value_type)) => {

Review Comment:
   I wonder if this need to handle the case when both lhs and rhs are 
Dictionaries 🤔 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to