eitsupi commented on issue #36458:
URL: https://github.com/apache/arrow/issues/36458#issuecomment-1624594686
We can use `dplyr::filter` with `dplyr::across` for this use case.
``` r
df <- data.frame(a = 1:3, b = c("a", NA, "c"))
df |>
arrow::as_arrow_table() |>
dplyr::filter(dplyr::across(everything(), ~ !is.na(.))) |>
dplyr::collect()
#> a b
#> 1 1 a
#> 2 3 c
```
<sup>Created on 2023-07-07 with [reprex
v2.0.2](https://reprex.tidyverse.org)</sup>
Note that this is why dbplyr does not implement drop_na either.
tidyverse/dbplyr#999
Related issue tidyverse/tidyr#939
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]