alamb commented on code in PR #7562:
URL: https://github.com/apache/arrow-datafusion/pull/7562#discussion_r1327953067


##########
datafusion/core/src/datasource/file_format/parquet.rs:
##########
@@ -719,55 +717,300 @@ impl DataSink for ParquetSink {
             }
         }
 
+        Ok(writers)
+    }
+
+    /// Creates an object store writer for each output partition
+    /// This is used when parallelizing individual parquet file writes.
+    async fn create_object_store_writers(
+        &self,
+        num_partitions: usize,
+        object_store: Arc<dyn ObjectStore>,
+    ) -> Result<Vec<AbortableWrite<Box<dyn AsyncWrite + Send + Unpin>>>> {
+        let mut writers = Vec::new();
+
+        for _ in 0..num_partitions {
+            let file_path = self.config.table_paths[0].prefix();
+            let object_meta = ObjectMeta {
+                location: file_path.clone(),
+                last_modified: chrono::offset::Utc::now(),
+                size: 0,
+                e_tag: None,
+            };
+            writers.push(
+                create_writer(
+                    FileWriterMode::PutMultipart,
+                    FileCompressionType::UNCOMPRESSED,
+                    object_meta.into(),
+                    object_store.clone(),
+                )
+                .await?,
+            );
+        }
+
+        Ok(writers)
+    }
+}
+
+#[async_trait]
+impl DataSink for ParquetSink {
+    async fn write_all(
+        &self,
+        mut data: Vec<SendableRecordBatchStream>,
+        context: &Arc<TaskContext>,
+    ) -> Result<u64> {
+        let num_partitions = data.len();
+        let parquet_props = self
+            .config
+            .file_type_writer_options
+            .try_into_parquet()?
+            .writer_options();
+
+        let object_store = context
+            .runtime_env()
+            .object_store(&self.config.object_store_url)?;
+
         let mut row_count = 0;
 
+        let allow_single_file_parallelism = context
+            .session_config()
+            .options()
+            .execution
+            .parquet
+            .allow_single_file_parallelism;
+
         match self.config.single_file_output {
             false => {
-                let mut join_set: JoinSet<Result<usize, DataFusionError>> =
-                    JoinSet::new();
-                for (mut data_stream, mut writer) in
-                    data.into_iter().zip(writers.into_iter())
-                {
-                    join_set.spawn(async move {
-                        let mut cnt = 0;
+                let writers = self
+                    .create_all_async_arrow_writers(
+                        num_partitions,
+                        parquet_props,
+                        object_store.clone(),
+                    )
+                    .await?;
+                // TODO parallelize individual parquet serialization when 
already outputting multiple parquet files
+                // e.g. if outputting 2 parquet files on a system with 32 
threads, spawn 16 tasks for each individual
+                // file to be serialized.
+                row_count = output_multiple_parquet_files(writers, 
data).await?;
+            }
+            true => {
+                if !allow_single_file_parallelism || data.len() <= 1 {

Review Comment:
   I was thinking that we eventually teach the planner that a data sink that 
can run in parallel would benefit from additional partitioning and then we let 
the existing planning infrastructure handle the actual work of parallelization



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to