Dandandan commented on a change in pull request #9116:
URL: https://github.com/apache/arrow/pull/9116#discussion_r557968302



##########
File path: rust/datafusion/src/physical_plan/hash_join.rs
##########
@@ -604,6 +562,199 @@ fn build_join_indexes(
         }
     }
 }
+use core::hash::BuildHasher;
+
+/// `Hasher` that returns the same `u64` value as a hash, to avoid re-hashing
+/// it when inserting/indexing or regrowing the `HashMap`
+struct IdHasher {
+    hash: u64,
+}
+
+impl Hasher for IdHasher {
+    fn finish(&self) -> u64 {
+        self.hash
+    }
+
+    fn write_u64(&mut self, i: u64) {
+        self.hash = i;
+    }
+
+    fn write(&mut self, _bytes: &[u8]) {
+        unreachable!("IdHasher should only be used for u64 keys")
+    }
+}
+
+#[derive(Debug)]
+struct IdHashBuilder {}
+
+impl BuildHasher for IdHashBuilder {
+    type Hasher = IdHasher;
+
+    fn build_hasher(&self) -> Self::Hasher {
+        IdHasher { hash: 0 }
+    }
+}
+
+// Combines two hashes into one hash
+fn combine_hashes(l: u64, r: u64) -> u64 {
+    let hash = (17 * 37u64).overflowing_add(l).0;
+    hash.overflowing_mul(37).0.overflowing_add(r).0
+}
+
+macro_rules! equal_rows_elem {
+    ($array_type:ident, $l: ident, $r: ident, $left: ident, $right: ident) => {
+        $l.as_any()
+            .downcast_ref::<$array_type>()
+            .unwrap()
+            .value($left)
+            == $r
+                .as_any()
+                .downcast_ref::<$array_type>()
+                .unwrap()
+                .value($right)
+    };
+}
+
+/// Left and right row have equal values
+fn equal_rows(
+    left: usize,
+    right: usize,
+    left_arrays: &[ArrayRef],
+    right_arrays: &[ArrayRef],
+) -> Result<bool> {
+    let mut err = None;
+    let res = left_arrays
+        .iter()
+        .zip(right_arrays)
+        .all(|(l, r)| match l.data_type() {
+            DataType::Null => true,
+            DataType::Boolean => {
+                equal_rows_elem!(BooleanArray, l, r, left, right)
+            }
+            DataType::Int8 => {
+                equal_rows_elem!(Int8Array, l, r, left, right)
+            }
+            DataType::Int16 => {
+                equal_rows_elem!(Int16Array, l, r, left, right)
+            }
+            DataType::Int32 => {
+                equal_rows_elem!(Int32Array, l, r, left, right)
+            }
+            DataType::Int64 => {
+                equal_rows_elem!(Int64Array, l, r, left, right)
+            }
+            DataType::UInt8 => {
+                equal_rows_elem!(UInt8Array, l, r, left, right)
+            }
+            DataType::UInt16 => {
+                equal_rows_elem!(UInt16Array, l, r, left, right)
+            }
+            DataType::UInt32 => {
+                equal_rows_elem!(UInt32Array, l, r, left, right)
+            }
+            DataType::UInt64 => {
+                equal_rows_elem!(UInt64Array, l, r, left, right)
+            }
+            DataType::Timestamp(_, None) => {
+                equal_rows_elem!(Int64Array, l, r, left, right)
+            }
+            DataType::Utf8 => {
+                equal_rows_elem!(StringArray, l, r, left, right)
+            }
+            DataType::LargeUtf8 => {
+                equal_rows_elem!(LargeStringArray, l, r, left, right)
+            }
+            _ => {
+                // This is internal because we should have caught this before.
+                err = Some(Err(DataFusionError::Internal(
+                    "Unsupported data type in hasher".to_string(),
+                )));
+                false
+            }
+        });
+
+    err.unwrap_or(Ok(res))
+}
+
+macro_rules! hash_array {
+    ($array_type:ident, $column: ident, $f: ident, $hashes: ident, 
$random_state: ident) => {
+        let array = $column.as_any().downcast_ref::<$array_type>().unwrap();
+
+        for (i, hash) in $hashes.iter_mut().enumerate() {
+            let mut hasher = $random_state.build_hasher();
+            hasher.$f(array.value(i));
+            *hash = combine_hashes(hasher.finish(), *hash);
+        }
+    };
+}
+
+/// Creates hash values for every element in the row based on the values in 
the columns
+fn create_hashes(arrays: &[ArrayRef], random_state: &RandomState) -> 
Result<Vec<u64>> {

Review comment:
       Not 100% sure how that would work for multiple columns? An earlier 
version of the PR also tried to reuse a bit of the allocation, but didn't seem 
to have a large impact on performance.
   I think this can be looked at in a following PR. I am also wondering if 
there are some cool SIMD hash algorithms on multiple elements of arrays (rather 
than the common `Vec<u8>`) if we want to optimize`create_hashes`. Or maybe we 
can write one ourselves.  I am not sure how that would work with an iterator?




----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

For queries about this service, please contact Infrastructure at:
[email protected]


Reply via email to