alamb commented on PR #7917: URL: https://github.com/apache/arrow-rs/pull/7917#issuecomment-3133109139
🤖: Benchmark completed
<details><summary>Details</summary>
<p>
```
group
issue-6057
main
-----
----------
----
append_rows 10 large_list(0) of u64(0)
1.00 668.7±7.41ns ?
?/sec 1.01 677.1±1.29ns ? ?/sec
append_rows 10 list(0) of u64(0)
1.00 701.2±1.19ns ?
?/sec 1.01 706.4±2.12ns ? ?/sec
append_rows 4096 4096 string_dictionary(20, 0.5), string_dictionary(30, 0),
string_dictionary(100, 0), i64(0) 1.01 385.6±1.72µs ?
?/sec 1.00 383.6±2.18µs ? ?/sec
append_rows 4096 bool(0, 0.5)
1.00 8.6±0.01µs ?
?/sec 1.00 8.6±0.02µs ? ?/sec
append_rows 4096 bool(0.3, 0.5)
1.00 16.1±0.10µs ?
?/sec 1.00 16.1±0.09µs ? ?/sec
append_rows 4096 i64(0)
1.01 7.8±0.09µs ?
?/sec 1.00 7.7±0.14µs ? ?/sec
append_rows 4096 i64(0.3)
1.01 18.1±0.11µs ?
?/sec 1.00 18.0±0.06µs ? ?/sec
append_rows 4096 large_list(0) of u64(0)
1.00 165.5±0.34µs ?
?/sec 1.01 166.6±0.96µs ? ?/sec
append_rows 4096 large_list(0) sliced to 10 of u64(0)
1.00 955.7±5.22ns ?
?/sec 1.04 993.7±2.20ns ? ?/sec
append_rows 4096 list(0) of u64(0)
1.00 167.9±1.35µs ?
?/sec 1.00 167.3±0.49µs ? ?/sec
append_rows 4096 list(0) sliced to 10 of u64(0)
1.00 1064.7±2.36ns ?
?/sec 1.01 1071.2±2.15ns ? ?/sec
append_rows 4096 string view(1..100, 0)
1.00 117.5±0.37µs ?
?/sec 1.00 117.5±0.22µs ? ?/sec
append_rows 4096 string view(1..100, 0.5)
1.00 102.4±0.23µs ?
?/sec 1.02 104.3±0.40µs ? ?/sec
append_rows 4096 string view(10, 0)
1.00 50.2±0.09µs ?
?/sec 1.00 50.4±0.20µs ? ?/sec
append_rows 4096 string view(100, 0)
1.00 77.9±0.23µs ?
?/sec 1.00 78.2±0.34µs ? ?/sec
append_rows 4096 string view(100, 0.5)
1.00 81.4±0.21µs ?
?/sec 1.01 82.0±0.25µs ? ?/sec
append_rows 4096 string view(30, 0)
1.00 53.7±0.22µs ?
?/sec 1.00 53.5±0.16µs ? ?/sec
append_rows 4096 string(10, 0)
1.00 46.7±0.33µs ?
?/sec 1.00 46.5±0.24µs ? ?/sec
append_rows 4096 string(100, 0)
1.00 77.8±0.16µs ?
?/sec 1.00 77.9±0.35µs ? ?/sec
append_rows 4096 string(100, 0.5)
1.00 87.1±0.39µs ?
?/sec 1.00 87.1±0.24µs ? ?/sec
append_rows 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0)
1.00 243.5±1.00µs ?
?/sec 1.00 244.1±1.16µs ? ?/sec
append_rows 4096 string(30, 0)
1.00 49.7±0.09µs ?
?/sec 1.00 49.6±0.08µs ? ?/sec
append_rows 4096 string_dictionary(10, 0)
1.00 76.1±0.12µs ?
?/sec 1.00 75.8±0.18µs ? ?/sec
append_rows 4096 string_dictionary(100, 0)
1.01 153.7±1.21µs ?
?/sec 1.00 152.3±0.57µs ? ?/sec
append_rows 4096 string_dictionary(100, 0.5)
1.00 119.2±0.38µs ?
?/sec 1.00 119.7±0.26µs ? ?/sec
append_rows 4096 string_dictionary(30, 0)
1.00 80.4±0.38µs ?
?/sec 1.00 80.3±0.17µs ? ?/sec
append_rows 4096 string_dictionary_low_cardinality(10, 0)
1.00 29.2±0.07µs ?
?/sec 1.01 29.5±0.07µs ? ?/sec
append_rows 4096 string_dictionary_low_cardinality(100, 0)
1.00 47.3±0.10µs ?
?/sec 1.01 47.9±0.11µs ? ?/sec
append_rows 4096 string_dictionary_low_cardinality(30, 0)
1.00 29.7±0.05µs ?
?/sec 1.00 29.6±0.17µs ? ?/sec
append_rows 4096 u64(0)
1.00 7.6±0.11µs ?
?/sec 1.00 7.6±0.10µs ? ?/sec
append_rows 4096 u64(0.3)
1.00 14.8±0.10µs ?
?/sec 1.00 14.9±0.10µs ? ?/sec
convert_columns 10 large_list(0) of u64(0)
1.00 918.1±5.61ns ?
?/sec 1.04 954.4±8.20ns ? ?/sec
convert_columns 10 list(0) of u64(0)
1.00 966.0±2.75ns ?
?/sec 1.02 987.4±5.92ns ? ?/sec
convert_columns 4096 4096 string_dictionary(20, 0.5), string_dictionary(30,
0), string_dictionary(100, 0), i64(0) 1.00 385.6±1.95µs ?
?/sec 1.01 388.5±2.20µs ? ?/sec
convert_columns 4096 bool(0, 0.5)
1.00 8.8±0.02µs ?
?/sec 1.01 8.9±0.01µs ? ?/sec
convert_columns 4096 bool(0.3, 0.5)
1.00 16.3±0.06µs ?
?/sec 1.01 16.4±0.07µs ? ?/sec
convert_columns 4096 i64(0)
1.01 8.1±0.13µs ?
?/sec 1.00 8.0±0.12µs ? ?/sec
convert_columns 4096 i64(0.3)
1.00 18.3±0.12µs ?
?/sec 1.00 18.3±0.12µs ? ?/sec
convert_columns 4096 large_list(0) of u64(0)
1.00 166.6±1.68µs ?
?/sec 1.00 166.9±0.50µs ? ?/sec
convert_columns 4096 large_list(0) sliced to 10 of u64(0)
1.00 1227.8±5.54ns ?
?/sec 1.03 1262.3±5.91ns ? ?/sec
convert_columns 4096 list(0) of u64(0)
1.00 168.7±0.94µs ?
?/sec 1.00 168.1±0.43µs ? ?/sec
convert_columns 4096 list(0) sliced to 10 of u64(0)
1.00 1347.1±2.44ns ?
?/sec 1.02 1369.1±5.07ns ? ?/sec
convert_columns 4096 string view(1..100, 0)
1.00 118.1±0.28µs ?
?/sec 1.00 117.9±0.34µs ? ?/sec
convert_columns 4096 string view(1..100, 0.5)
1.00 103.2±0.42µs ?
?/sec 1.02 105.4±0.81µs ? ?/sec
convert_columns 4096 string view(10, 0)
1.00 50.4±0.19µs ?
?/sec 1.00 50.6±0.09µs ? ?/sec
convert_columns 4096 string view(100, 0)
1.00 77.6±0.26µs ?
?/sec 1.00 77.7±0.37µs ? ?/sec
convert_columns 4096 string view(100, 0.5)
1.00 82.3±0.32µs ?
?/sec 1.00 82.4±0.36µs ? ?/sec
convert_columns 4096 string view(30, 0)
1.00 53.7±0.15µs ?
?/sec 1.00 53.7±0.14µs ? ?/sec
convert_columns 4096 string(10, 0)
1.00 46.6±0.10µs ?
?/sec 1.00 46.6±0.09µs ? ?/sec
convert_columns 4096 string(100, 0)
1.00 77.3±0.24µs ?
?/sec 1.00 77.3±0.26µs ? ?/sec
convert_columns 4096 string(100, 0.5)
1.00 87.1±0.24µs ?
?/sec 1.00 87.0±0.14µs ? ?/sec
convert_columns 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0)
1.00 244.5±0.83µs ?
?/sec 1.01 248.1±1.09µs ? ?/sec
convert_columns 4096 string(30, 0)
1.00 50.0±0.08µs ?
?/sec 1.00 49.9±0.15µs ? ?/sec
convert_columns 4096 string_dictionary(10, 0)
1.01 77.9±1.79µs ?
?/sec 1.00 76.8±0.16µs ? ?/sec
convert_columns 4096 string_dictionary(100, 0)
1.01 154.8±1.47µs ?
?/sec 1.00 152.8±1.08µs ? ?/sec
convert_columns 4096 string_dictionary(100, 0.5)
1.01 120.6±0.51µs ?
?/sec 1.00 119.6±0.48µs ? ?/sec
convert_columns 4096 string_dictionary(30, 0)
1.00 81.0±0.21µs ?
?/sec 1.01 81.7±0.20µs ? ?/sec
convert_columns 4096 string_dictionary_low_cardinality(10, 0)
1.00 30.2±0.08µs ?
?/sec 1.01 30.4±0.04µs ? ?/sec
convert_columns 4096 string_dictionary_low_cardinality(100, 0)
1.00 49.1±0.19µs ?
?/sec 1.00 49.1±0.12µs ? ?/sec
convert_columns 4096 string_dictionary_low_cardinality(30, 0)
1.00 30.4±0.12µs ?
?/sec 1.00 30.5±0.08µs ? ?/sec
convert_columns 4096 u64(0)
1.01 7.9±0.12µs ?
?/sec 1.00 7.8±0.11µs ? ?/sec
convert_columns 4096 u64(0.3)
1.00 15.0±0.09µs ?
?/sec 1.00 15.0±0.07µs ? ?/sec
convert_columns_prepared 10 large_list(0) of u64(0)
1.00 709.0±4.02ns ?
?/sec 1.05 744.1±7.35ns ? ?/sec
convert_columns_prepared 10 list(0) of u64(0)
1.00 754.7±1.77ns ?
?/sec 1.01 762.4±2.47ns ? ?/sec
convert_columns_prepared 4096 4096 string_dictionary(20, 0.5),
string_dictionary(30, 0), string_dictionary(100, 0), i64(0) 1.00
385.4±2.15µs ? ?/sec 1.00 385.8±1.87µs ? ?/sec
convert_columns_prepared 4096 bool(0, 0.5)
1.00 8.8±0.01µs ?
?/sec 1.00 8.8±0.04µs ? ?/sec
convert_columns_prepared 4096 bool(0.3, 0.5)
1.01 16.3±0.09µs ?
?/sec 1.00 16.2±0.08µs ? ?/sec
convert_columns_prepared 4096 i64(0)
1.00 7.9±0.11µs ?
?/sec 1.01 8.0±0.01µs ? ?/sec
convert_columns_prepared 4096 i64(0.3)
1.01 18.2±0.10µs ?
?/sec 1.00 18.1±0.09µs ? ?/sec
convert_columns_prepared 4096 large_list(0) of u64(0)
1.00 166.2±1.50µs ?
?/sec 1.00 166.6±0.49µs ? ?/sec
convert_columns_prepared 4096 large_list(0) sliced to 10 of u64(0)
1.00 1027.9±4.14ns ?
?/sec 1.04 1067.5±2.50ns ? ?/sec
convert_columns_prepared 4096 list(0) of u64(0)
1.01 168.5±1.52µs ?
?/sec 1.00 167.4±0.37µs ? ?/sec
convert_columns_prepared 4096 list(0) sliced to 10 of u64(0)
1.00 1139.6±3.10ns ?
?/sec 1.02 1161.2±6.99ns ? ?/sec
convert_columns_prepared 4096 string view(1..100, 0)
1.00 117.7±0.30µs ?
?/sec 1.00 117.7±0.28µs ? ?/sec
convert_columns_prepared 4096 string view(1..100, 0.5)
1.00 103.4±0.38µs ?
?/sec 1.02 105.1±0.38µs ? ?/sec
convert_columns_prepared 4096 string view(10, 0)
1.00 50.5±0.14µs ?
?/sec 1.00 50.4±0.07µs ? ?/sec
convert_columns_prepared 4096 string view(100, 0)
1.00 77.1±0.31µs ?
?/sec 1.02 78.6±0.25µs ? ?/sec
convert_columns_prepared 4096 string view(100, 0.5)
1.00 81.9±0.29µs ?
?/sec 1.00 82.2±0.27µs ? ?/sec
convert_columns_prepared 4096 string view(30, 0)
1.00 53.7±0.17µs ?
?/sec 1.00 53.6±0.16µs ? ?/sec
convert_columns_prepared 4096 string(10, 0)
1.00 46.5±0.23µs ?
?/sec 1.00 46.7±0.15µs ? ?/sec
convert_columns_prepared 4096 string(100, 0)
1.00 77.9±0.27µs ?
?/sec 1.00 78.0±0.34µs ? ?/sec
convert_columns_prepared 4096 string(100, 0.5)
1.00 87.2±0.49µs ?
?/sec 1.00 87.4±0.15µs ? ?/sec
convert_columns_prepared 4096 string(20, 0.5), string(30, 0), string(100,
0), i64(0) 1.00 245.9±1.29µs
? ?/sec 1.00 245.8±0.87µs ? ?/sec
convert_columns_prepared 4096 string(30, 0)
1.00 49.8±0.09µs ?
?/sec 1.00 49.8±0.12µs ? ?/sec
convert_columns_prepared 4096 string_dictionary(10, 0)
1.00 76.3±0.17µs ?
?/sec 1.00 76.5±0.20µs ? ?/sec
convert_columns_prepared 4096 string_dictionary(100, 0)
1.00 153.9±0.77µs ?
?/sec 1.00 153.4±1.27µs ? ?/sec
convert_columns_prepared 4096 string_dictionary(100, 0.5)
1.00 119.8±0.68µs ?
?/sec 1.00 119.7±0.49µs ? ?/sec
convert_columns_prepared 4096 string_dictionary(30, 0)
1.00 80.4±0.32µs ?
?/sec 1.00 80.7±0.32µs ? ?/sec
convert_columns_prepared 4096 string_dictionary_low_cardinality(10, 0)
1.00 29.4±0.10µs ?
?/sec 1.01 29.7±0.05µs ? ?/sec
convert_columns_prepared 4096 string_dictionary_low_cardinality(100, 0)
1.00 47.5±0.13µs ?
?/sec 1.01 47.9±0.09µs ? ?/sec
convert_columns_prepared 4096 string_dictionary_low_cardinality(30, 0)
1.00 29.8±0.07µs ?
?/sec 1.01 30.1±0.07µs ? ?/sec
convert_columns_prepared 4096 u64(0)
1.00 7.7±0.12µs ?
?/sec 1.00 7.8±0.12µs ? ?/sec
convert_columns_prepared 4096 u64(0.3)
1.00 14.9±0.09µs ?
?/sec 1.00 14.9±0.07µs ? ?/sec
convert_rows 10 large_list(0) of u64(0)
1.00 1580.2±5.72ns ?
?/sec 1.05 1657.8±9.70ns ? ?/sec
convert_rows 10 list(0) of u64(0)
1.00 1769.6±4.63ns ?
?/sec 1.00 1769.1±3.46ns ? ?/sec
convert_rows 4096 4096 string_dictionary(20, 0.5), string_dictionary(30, 0),
string_dictionary(100, 0), i64(0) 1.00 301.0±1.37µs ?
?/sec 1.00 300.0±1.19µs ? ?/sec
convert_rows 4096 bool(0, 0.5)
1.00 16.0±0.07µs ?
?/sec 1.00 16.0±0.03µs ? ?/sec
convert_rows 4096 bool(0.3, 0.5)
1.00 16.0±0.02µs ?
?/sec 1.00 16.0±0.04µs ? ?/sec
convert_rows 4096 i64(0)
1.00 32.9±0.12µs ?
?/sec 1.00 33.0±0.08µs ? ?/sec
convert_rows 4096 i64(0.3)
1.00 33.0±0.10µs ?
?/sec 1.00 33.0±0.07µs ? ?/sec
convert_rows 4096 large_list(0) of u64(0)
1.00 260.2±2.14µs ?
?/sec 1.00 260.2±0.97µs ? ?/sec
convert_rows 4096 large_list(0) sliced to 10 of u64(0)
1.00 2.0±0.00µs ?
?/sec 1.00 2.0±0.01µs ? ?/sec
convert_rows 4096 list(0) of u64(0)
1.00 264.5±2.58µs ?
?/sec 1.00 265.6±0.60µs ? ?/sec
convert_rows 4096 list(0) sliced to 10 of u64(0)
1.00 2.1±0.01µs ?
?/sec 1.06 2.2±0.01µs ? ?/sec
convert_rows 4096 string view(1..100, 0)
1.00 169.0±0.27µs ?
?/sec 1.02 171.8±0.42µs ? ?/sec
convert_rows 4096 string view(1..100, 0.5)
1.00 132.9±0.30µs ?
?/sec 1.02 136.1±0.29µs ? ?/sec
convert_rows 4096 string view(10, 0)
1.00 72.6±0.15µs ?
?/sec 1.01 73.0±0.12µs ? ?/sec
convert_rows 4096 string view(100, 0)
1.00 122.3±0.74µs ?
?/sec 1.00 122.2±0.50µs ? ?/sec
convert_rows 4096 string view(100, 0.5)
1.00 110.7±0.31µs ?
?/sec 1.01 111.8±0.27µs ? ?/sec
convert_rows 4096 string view(30, 0)
1.00 79.4±1.49µs ?
?/sec 1.03 81.9±0.15µs ? ?/sec
convert_rows 4096 string(10, 0)
1.00 61.0±0.14µs ?
?/sec 1.00 60.9±0.13µs ? ?/sec
convert_rows 4096 string(100, 0)
1.00 107.8±0.55µs ?
?/sec 1.00 108.1±0.40µs ? ?/sec
convert_rows 4096 string(100, 0.5)
1.00 102.8±0.18µs ?
?/sec 1.01 103.4±0.31µs ? ?/sec
convert_rows 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0)
1.00 295.3±3.46µs ?
?/sec 1.02 299.9±2.00µs ? ?/sec
convert_rows 4096 string(30, 0)
1.00 73.3±0.21µs ?
?/sec 1.01 73.8±0.26µs ? ?/sec
convert_rows 4096 string_dictionary(10, 0)
1.00 61.2±0.16µs ?
?/sec 1.00 61.1±0.12µs ? ?/sec
convert_rows 4096 string_dictionary(100, 0)
1.00 108.4±0.37µs ?
?/sec 1.00 108.8±0.62µs ? ?/sec
convert_rows 4096 string_dictionary(100, 0.5)
1.00 103.2±0.33µs ?
?/sec 1.00 103.4±0.25µs ? ?/sec
convert_rows 4096 string_dictionary(30, 0)
1.00 73.9±0.25µs ?
?/sec 1.00 74.2±0.36µs ? ?/sec
convert_rows 4096 string_dictionary_low_cardinality(10, 0)
1.00 61.1±0.12µs ?
?/sec 1.00 61.2±0.09µs ? ?/sec
convert_rows 4096 string_dictionary_low_cardinality(100, 0)
1.00 107.3±0.43µs ?
?/sec 1.01 107.9±1.02µs ? ?/sec
convert_rows 4096 string_dictionary_low_cardinality(30, 0)
1.00 74.0±0.21µs ?
?/sec 1.01 74.5±0.33µs ? ?/sec
convert_rows 4096 u64(0)
1.00 30.1±0.08µs ?
?/sec 1.00 30.0±0.06µs ? ?/sec
convert_rows 4096 u64(0.3)
1.00 30.2±0.06µs ?
?/sec 1.00 30.2±0.04µs ? ?/sec
iterate rows
1.00 2.6±0.00µs ?
?/sec 1.00 2.6±0.00µs ? ?/sec
```
</p>
</details>
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
