alamb commented on PR #7917: URL: https://github.com/apache/arrow-rs/pull/7917#issuecomment-3133109139
🤖: Benchmark completed <details><summary>Details</summary> <p> ``` group issue-6057 main ----- ---------- ---- append_rows 10 large_list(0) of u64(0) 1.00 668.7±7.41ns ? ?/sec 1.01 677.1±1.29ns ? ?/sec append_rows 10 list(0) of u64(0) 1.00 701.2±1.19ns ? ?/sec 1.01 706.4±2.12ns ? ?/sec append_rows 4096 4096 string_dictionary(20, 0.5), string_dictionary(30, 0), string_dictionary(100, 0), i64(0) 1.01 385.6±1.72µs ? ?/sec 1.00 383.6±2.18µs ? ?/sec append_rows 4096 bool(0, 0.5) 1.00 8.6±0.01µs ? ?/sec 1.00 8.6±0.02µs ? ?/sec append_rows 4096 bool(0.3, 0.5) 1.00 16.1±0.10µs ? ?/sec 1.00 16.1±0.09µs ? ?/sec append_rows 4096 i64(0) 1.01 7.8±0.09µs ? ?/sec 1.00 7.7±0.14µs ? ?/sec append_rows 4096 i64(0.3) 1.01 18.1±0.11µs ? ?/sec 1.00 18.0±0.06µs ? ?/sec append_rows 4096 large_list(0) of u64(0) 1.00 165.5±0.34µs ? ?/sec 1.01 166.6±0.96µs ? ?/sec append_rows 4096 large_list(0) sliced to 10 of u64(0) 1.00 955.7±5.22ns ? ?/sec 1.04 993.7±2.20ns ? ?/sec append_rows 4096 list(0) of u64(0) 1.00 167.9±1.35µs ? ?/sec 1.00 167.3±0.49µs ? ?/sec append_rows 4096 list(0) sliced to 10 of u64(0) 1.00 1064.7±2.36ns ? ?/sec 1.01 1071.2±2.15ns ? ?/sec append_rows 4096 string view(1..100, 0) 1.00 117.5±0.37µs ? ?/sec 1.00 117.5±0.22µs ? ?/sec append_rows 4096 string view(1..100, 0.5) 1.00 102.4±0.23µs ? ?/sec 1.02 104.3±0.40µs ? ?/sec append_rows 4096 string view(10, 0) 1.00 50.2±0.09µs ? ?/sec 1.00 50.4±0.20µs ? ?/sec append_rows 4096 string view(100, 0) 1.00 77.9±0.23µs ? ?/sec 1.00 78.2±0.34µs ? ?/sec append_rows 4096 string view(100, 0.5) 1.00 81.4±0.21µs ? ?/sec 1.01 82.0±0.25µs ? ?/sec append_rows 4096 string view(30, 0) 1.00 53.7±0.22µs ? ?/sec 1.00 53.5±0.16µs ? ?/sec append_rows 4096 string(10, 0) 1.00 46.7±0.33µs ? ?/sec 1.00 46.5±0.24µs ? ?/sec append_rows 4096 string(100, 0) 1.00 77.8±0.16µs ? ?/sec 1.00 77.9±0.35µs ? ?/sec append_rows 4096 string(100, 0.5) 1.00 87.1±0.39µs ? ?/sec 1.00 87.1±0.24µs ? ?/sec append_rows 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0) 1.00 243.5±1.00µs ? ?/sec 1.00 244.1±1.16µs ? ?/sec append_rows 4096 string(30, 0) 1.00 49.7±0.09µs ? ?/sec 1.00 49.6±0.08µs ? ?/sec append_rows 4096 string_dictionary(10, 0) 1.00 76.1±0.12µs ? ?/sec 1.00 75.8±0.18µs ? ?/sec append_rows 4096 string_dictionary(100, 0) 1.01 153.7±1.21µs ? ?/sec 1.00 152.3±0.57µs ? ?/sec append_rows 4096 string_dictionary(100, 0.5) 1.00 119.2±0.38µs ? ?/sec 1.00 119.7±0.26µs ? ?/sec append_rows 4096 string_dictionary(30, 0) 1.00 80.4±0.38µs ? ?/sec 1.00 80.3±0.17µs ? ?/sec append_rows 4096 string_dictionary_low_cardinality(10, 0) 1.00 29.2±0.07µs ? ?/sec 1.01 29.5±0.07µs ? ?/sec append_rows 4096 string_dictionary_low_cardinality(100, 0) 1.00 47.3±0.10µs ? ?/sec 1.01 47.9±0.11µs ? ?/sec append_rows 4096 string_dictionary_low_cardinality(30, 0) 1.00 29.7±0.05µs ? ?/sec 1.00 29.6±0.17µs ? ?/sec append_rows 4096 u64(0) 1.00 7.6±0.11µs ? ?/sec 1.00 7.6±0.10µs ? ?/sec append_rows 4096 u64(0.3) 1.00 14.8±0.10µs ? ?/sec 1.00 14.9±0.10µs ? ?/sec convert_columns 10 large_list(0) of u64(0) 1.00 918.1±5.61ns ? ?/sec 1.04 954.4±8.20ns ? ?/sec convert_columns 10 list(0) of u64(0) 1.00 966.0±2.75ns ? ?/sec 1.02 987.4±5.92ns ? ?/sec convert_columns 4096 4096 string_dictionary(20, 0.5), string_dictionary(30, 0), string_dictionary(100, 0), i64(0) 1.00 385.6±1.95µs ? ?/sec 1.01 388.5±2.20µs ? ?/sec convert_columns 4096 bool(0, 0.5) 1.00 8.8±0.02µs ? ?/sec 1.01 8.9±0.01µs ? ?/sec convert_columns 4096 bool(0.3, 0.5) 1.00 16.3±0.06µs ? ?/sec 1.01 16.4±0.07µs ? ?/sec convert_columns 4096 i64(0) 1.01 8.1±0.13µs ? ?/sec 1.00 8.0±0.12µs ? ?/sec convert_columns 4096 i64(0.3) 1.00 18.3±0.12µs ? ?/sec 1.00 18.3±0.12µs ? ?/sec convert_columns 4096 large_list(0) of u64(0) 1.00 166.6±1.68µs ? ?/sec 1.00 166.9±0.50µs ? ?/sec convert_columns 4096 large_list(0) sliced to 10 of u64(0) 1.00 1227.8±5.54ns ? ?/sec 1.03 1262.3±5.91ns ? ?/sec convert_columns 4096 list(0) of u64(0) 1.00 168.7±0.94µs ? ?/sec 1.00 168.1±0.43µs ? ?/sec convert_columns 4096 list(0) sliced to 10 of u64(0) 1.00 1347.1±2.44ns ? ?/sec 1.02 1369.1±5.07ns ? ?/sec convert_columns 4096 string view(1..100, 0) 1.00 118.1±0.28µs ? ?/sec 1.00 117.9±0.34µs ? ?/sec convert_columns 4096 string view(1..100, 0.5) 1.00 103.2±0.42µs ? ?/sec 1.02 105.4±0.81µs ? ?/sec convert_columns 4096 string view(10, 0) 1.00 50.4±0.19µs ? ?/sec 1.00 50.6±0.09µs ? ?/sec convert_columns 4096 string view(100, 0) 1.00 77.6±0.26µs ? ?/sec 1.00 77.7±0.37µs ? ?/sec convert_columns 4096 string view(100, 0.5) 1.00 82.3±0.32µs ? ?/sec 1.00 82.4±0.36µs ? ?/sec convert_columns 4096 string view(30, 0) 1.00 53.7±0.15µs ? ?/sec 1.00 53.7±0.14µs ? ?/sec convert_columns 4096 string(10, 0) 1.00 46.6±0.10µs ? ?/sec 1.00 46.6±0.09µs ? ?/sec convert_columns 4096 string(100, 0) 1.00 77.3±0.24µs ? ?/sec 1.00 77.3±0.26µs ? ?/sec convert_columns 4096 string(100, 0.5) 1.00 87.1±0.24µs ? ?/sec 1.00 87.0±0.14µs ? ?/sec convert_columns 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0) 1.00 244.5±0.83µs ? ?/sec 1.01 248.1±1.09µs ? ?/sec convert_columns 4096 string(30, 0) 1.00 50.0±0.08µs ? ?/sec 1.00 49.9±0.15µs ? ?/sec convert_columns 4096 string_dictionary(10, 0) 1.01 77.9±1.79µs ? ?/sec 1.00 76.8±0.16µs ? ?/sec convert_columns 4096 string_dictionary(100, 0) 1.01 154.8±1.47µs ? ?/sec 1.00 152.8±1.08µs ? ?/sec convert_columns 4096 string_dictionary(100, 0.5) 1.01 120.6±0.51µs ? ?/sec 1.00 119.6±0.48µs ? ?/sec convert_columns 4096 string_dictionary(30, 0) 1.00 81.0±0.21µs ? ?/sec 1.01 81.7±0.20µs ? ?/sec convert_columns 4096 string_dictionary_low_cardinality(10, 0) 1.00 30.2±0.08µs ? ?/sec 1.01 30.4±0.04µs ? ?/sec convert_columns 4096 string_dictionary_low_cardinality(100, 0) 1.00 49.1±0.19µs ? ?/sec 1.00 49.1±0.12µs ? ?/sec convert_columns 4096 string_dictionary_low_cardinality(30, 0) 1.00 30.4±0.12µs ? ?/sec 1.00 30.5±0.08µs ? ?/sec convert_columns 4096 u64(0) 1.01 7.9±0.12µs ? ?/sec 1.00 7.8±0.11µs ? ?/sec convert_columns 4096 u64(0.3) 1.00 15.0±0.09µs ? ?/sec 1.00 15.0±0.07µs ? ?/sec convert_columns_prepared 10 large_list(0) of u64(0) 1.00 709.0±4.02ns ? ?/sec 1.05 744.1±7.35ns ? ?/sec convert_columns_prepared 10 list(0) of u64(0) 1.00 754.7±1.77ns ? ?/sec 1.01 762.4±2.47ns ? ?/sec convert_columns_prepared 4096 4096 string_dictionary(20, 0.5), string_dictionary(30, 0), string_dictionary(100, 0), i64(0) 1.00 385.4±2.15µs ? ?/sec 1.00 385.8±1.87µs ? ?/sec convert_columns_prepared 4096 bool(0, 0.5) 1.00 8.8±0.01µs ? ?/sec 1.00 8.8±0.04µs ? ?/sec convert_columns_prepared 4096 bool(0.3, 0.5) 1.01 16.3±0.09µs ? ?/sec 1.00 16.2±0.08µs ? ?/sec convert_columns_prepared 4096 i64(0) 1.00 7.9±0.11µs ? ?/sec 1.01 8.0±0.01µs ? ?/sec convert_columns_prepared 4096 i64(0.3) 1.01 18.2±0.10µs ? ?/sec 1.00 18.1±0.09µs ? ?/sec convert_columns_prepared 4096 large_list(0) of u64(0) 1.00 166.2±1.50µs ? ?/sec 1.00 166.6±0.49µs ? ?/sec convert_columns_prepared 4096 large_list(0) sliced to 10 of u64(0) 1.00 1027.9±4.14ns ? ?/sec 1.04 1067.5±2.50ns ? ?/sec convert_columns_prepared 4096 list(0) of u64(0) 1.01 168.5±1.52µs ? ?/sec 1.00 167.4±0.37µs ? ?/sec convert_columns_prepared 4096 list(0) sliced to 10 of u64(0) 1.00 1139.6±3.10ns ? ?/sec 1.02 1161.2±6.99ns ? ?/sec convert_columns_prepared 4096 string view(1..100, 0) 1.00 117.7±0.30µs ? ?/sec 1.00 117.7±0.28µs ? ?/sec convert_columns_prepared 4096 string view(1..100, 0.5) 1.00 103.4±0.38µs ? ?/sec 1.02 105.1±0.38µs ? ?/sec convert_columns_prepared 4096 string view(10, 0) 1.00 50.5±0.14µs ? ?/sec 1.00 50.4±0.07µs ? ?/sec convert_columns_prepared 4096 string view(100, 0) 1.00 77.1±0.31µs ? ?/sec 1.02 78.6±0.25µs ? ?/sec convert_columns_prepared 4096 string view(100, 0.5) 1.00 81.9±0.29µs ? ?/sec 1.00 82.2±0.27µs ? ?/sec convert_columns_prepared 4096 string view(30, 0) 1.00 53.7±0.17µs ? ?/sec 1.00 53.6±0.16µs ? ?/sec convert_columns_prepared 4096 string(10, 0) 1.00 46.5±0.23µs ? ?/sec 1.00 46.7±0.15µs ? ?/sec convert_columns_prepared 4096 string(100, 0) 1.00 77.9±0.27µs ? ?/sec 1.00 78.0±0.34µs ? ?/sec convert_columns_prepared 4096 string(100, 0.5) 1.00 87.2±0.49µs ? ?/sec 1.00 87.4±0.15µs ? ?/sec convert_columns_prepared 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0) 1.00 245.9±1.29µs ? ?/sec 1.00 245.8±0.87µs ? ?/sec convert_columns_prepared 4096 string(30, 0) 1.00 49.8±0.09µs ? ?/sec 1.00 49.8±0.12µs ? ?/sec convert_columns_prepared 4096 string_dictionary(10, 0) 1.00 76.3±0.17µs ? ?/sec 1.00 76.5±0.20µs ? ?/sec convert_columns_prepared 4096 string_dictionary(100, 0) 1.00 153.9±0.77µs ? ?/sec 1.00 153.4±1.27µs ? ?/sec convert_columns_prepared 4096 string_dictionary(100, 0.5) 1.00 119.8±0.68µs ? ?/sec 1.00 119.7±0.49µs ? ?/sec convert_columns_prepared 4096 string_dictionary(30, 0) 1.00 80.4±0.32µs ? ?/sec 1.00 80.7±0.32µs ? ?/sec convert_columns_prepared 4096 string_dictionary_low_cardinality(10, 0) 1.00 29.4±0.10µs ? ?/sec 1.01 29.7±0.05µs ? ?/sec convert_columns_prepared 4096 string_dictionary_low_cardinality(100, 0) 1.00 47.5±0.13µs ? ?/sec 1.01 47.9±0.09µs ? ?/sec convert_columns_prepared 4096 string_dictionary_low_cardinality(30, 0) 1.00 29.8±0.07µs ? ?/sec 1.01 30.1±0.07µs ? ?/sec convert_columns_prepared 4096 u64(0) 1.00 7.7±0.12µs ? ?/sec 1.00 7.8±0.12µs ? ?/sec convert_columns_prepared 4096 u64(0.3) 1.00 14.9±0.09µs ? ?/sec 1.00 14.9±0.07µs ? ?/sec convert_rows 10 large_list(0) of u64(0) 1.00 1580.2±5.72ns ? ?/sec 1.05 1657.8±9.70ns ? ?/sec convert_rows 10 list(0) of u64(0) 1.00 1769.6±4.63ns ? ?/sec 1.00 1769.1±3.46ns ? ?/sec convert_rows 4096 4096 string_dictionary(20, 0.5), string_dictionary(30, 0), string_dictionary(100, 0), i64(0) 1.00 301.0±1.37µs ? ?/sec 1.00 300.0±1.19µs ? ?/sec convert_rows 4096 bool(0, 0.5) 1.00 16.0±0.07µs ? ?/sec 1.00 16.0±0.03µs ? ?/sec convert_rows 4096 bool(0.3, 0.5) 1.00 16.0±0.02µs ? ?/sec 1.00 16.0±0.04µs ? ?/sec convert_rows 4096 i64(0) 1.00 32.9±0.12µs ? ?/sec 1.00 33.0±0.08µs ? ?/sec convert_rows 4096 i64(0.3) 1.00 33.0±0.10µs ? ?/sec 1.00 33.0±0.07µs ? ?/sec convert_rows 4096 large_list(0) of u64(0) 1.00 260.2±2.14µs ? ?/sec 1.00 260.2±0.97µs ? ?/sec convert_rows 4096 large_list(0) sliced to 10 of u64(0) 1.00 2.0±0.00µs ? ?/sec 1.00 2.0±0.01µs ? ?/sec convert_rows 4096 list(0) of u64(0) 1.00 264.5±2.58µs ? ?/sec 1.00 265.6±0.60µs ? ?/sec convert_rows 4096 list(0) sliced to 10 of u64(0) 1.00 2.1±0.01µs ? ?/sec 1.06 2.2±0.01µs ? ?/sec convert_rows 4096 string view(1..100, 0) 1.00 169.0±0.27µs ? ?/sec 1.02 171.8±0.42µs ? ?/sec convert_rows 4096 string view(1..100, 0.5) 1.00 132.9±0.30µs ? ?/sec 1.02 136.1±0.29µs ? ?/sec convert_rows 4096 string view(10, 0) 1.00 72.6±0.15µs ? ?/sec 1.01 73.0±0.12µs ? ?/sec convert_rows 4096 string view(100, 0) 1.00 122.3±0.74µs ? ?/sec 1.00 122.2±0.50µs ? ?/sec convert_rows 4096 string view(100, 0.5) 1.00 110.7±0.31µs ? ?/sec 1.01 111.8±0.27µs ? ?/sec convert_rows 4096 string view(30, 0) 1.00 79.4±1.49µs ? ?/sec 1.03 81.9±0.15µs ? ?/sec convert_rows 4096 string(10, 0) 1.00 61.0±0.14µs ? ?/sec 1.00 60.9±0.13µs ? ?/sec convert_rows 4096 string(100, 0) 1.00 107.8±0.55µs ? ?/sec 1.00 108.1±0.40µs ? ?/sec convert_rows 4096 string(100, 0.5) 1.00 102.8±0.18µs ? ?/sec 1.01 103.4±0.31µs ? ?/sec convert_rows 4096 string(20, 0.5), string(30, 0), string(100, 0), i64(0) 1.00 295.3±3.46µs ? ?/sec 1.02 299.9±2.00µs ? ?/sec convert_rows 4096 string(30, 0) 1.00 73.3±0.21µs ? ?/sec 1.01 73.8±0.26µs ? ?/sec convert_rows 4096 string_dictionary(10, 0) 1.00 61.2±0.16µs ? ?/sec 1.00 61.1±0.12µs ? ?/sec convert_rows 4096 string_dictionary(100, 0) 1.00 108.4±0.37µs ? ?/sec 1.00 108.8±0.62µs ? ?/sec convert_rows 4096 string_dictionary(100, 0.5) 1.00 103.2±0.33µs ? ?/sec 1.00 103.4±0.25µs ? ?/sec convert_rows 4096 string_dictionary(30, 0) 1.00 73.9±0.25µs ? ?/sec 1.00 74.2±0.36µs ? ?/sec convert_rows 4096 string_dictionary_low_cardinality(10, 0) 1.00 61.1±0.12µs ? ?/sec 1.00 61.2±0.09µs ? ?/sec convert_rows 4096 string_dictionary_low_cardinality(100, 0) 1.00 107.3±0.43µs ? ?/sec 1.01 107.9±1.02µs ? ?/sec convert_rows 4096 string_dictionary_low_cardinality(30, 0) 1.00 74.0±0.21µs ? ?/sec 1.01 74.5±0.33µs ? ?/sec convert_rows 4096 u64(0) 1.00 30.1±0.08µs ? ?/sec 1.00 30.0±0.06µs ? ?/sec convert_rows 4096 u64(0.3) 1.00 30.2±0.06µs ? ?/sec 1.00 30.2±0.04µs ? ?/sec iterate rows 1.00 2.6±0.00µs ? ?/sec 1.00 2.6±0.00µs ? ?/sec ``` </p> </details> -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org