AlenkaF commented on code in PR #48648:
URL: https://github.com/apache/arrow/pull/48648#discussion_r2667991632
##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""
+
+function_doc_additions["min"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min(arr1)
+ <pyarrow.Int64Scalar: 1>
+
+ Using `skip_nulls` to handle null values.
Review Comment:
```suggestion
Using ``skip_nulls`` to handle null values.
```
##########
python/pyarrow/tests/test_compute.py:
##########
@@ -883,6 +883,38 @@ def test_generated_docstrings():
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
+
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min_max(arr1)
+ <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min_max(arr2)
+ <pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
+ >>> pc.min_max(arr2, skip_nulls=False)
+ <pyarrow.StructScalar: [('min', None), ('max', None)]>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
Review Comment:
```suggestion
Using ``ScalarAggregateOptions`` to control minimum number of
non-null values.
```
##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""
+
+function_doc_additions["min"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min(arr1)
+ <pyarrow.Int64Scalar: 1>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min(arr2)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
+
+ >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+ >>> pc.min(arr3)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+ <pyarrow.DoubleScalar: None>
+
+ This function also works with string values.
+
+ >>> arr4 = pa.array(["z", None, "y", "x"])
+ >>> pc.min(arr4)
+ <pyarrow.StringScalar: 'x'>
+ """
+
+function_doc_additions["max"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.max(arr1)
+ <pyarrow.Int64Scalar: 3>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.max(arr2)
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
+
+ >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+ >>> pc.max(arr3)
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+ <pyarrow.DoubleScalar: None>
+
+ This function also works with string values.
+
+ >>> arr4 = pa.array(["z", None, "y", "x"])
+ >>> pc.max(arr4)
+ <pyarrow.StringScalar: 'z'>
+ """
+
+function_doc_additions["min_max"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min_max(arr1)
+ <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+ Using `skip_nulls` to handle null values.
Review Comment:
```suggestion
Using ``skip_nulls`` to handle null values.
```
##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""
+
+function_doc_additions["min"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min(arr1)
+ <pyarrow.Int64Scalar: 1>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min(arr2)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
Review Comment:
```suggestion
Using ``ScalarAggregateOptions`` to control minimum number of non-null
values.
```
##########
python/pyarrow/tests/test_compute.py:
##########
@@ -883,6 +883,38 @@ def test_generated_docstrings():
Alternative way of passing options.
memory_pool : pyarrow.MemoryPool, optional
If not passed, will allocate memory from the default memory pool.
+
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min_max(arr1)
+ <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+ Using `skip_nulls` to handle null values.
Review Comment:
```suggestion
Using ``skip_nulls`` to handle null values.
```
##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""
+
+function_doc_additions["min"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min(arr1)
+ <pyarrow.Int64Scalar: 1>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min(arr2)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
+
+ >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+ >>> pc.min(arr3)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+ <pyarrow.DoubleScalar: None>
+
+ This function also works with string values.
+
+ >>> arr4 = pa.array(["z", None, "y", "x"])
+ >>> pc.min(arr4)
+ <pyarrow.StringScalar: 'x'>
+ """
+
+function_doc_additions["max"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.max(arr1)
+ <pyarrow.Int64Scalar: 3>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.max(arr2)
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
Review Comment:
```suggestion
Using ``ScalarAggregateOptions`` to control minimum number of non-null
values.
```
##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""
+
+function_doc_additions["min"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min(arr1)
+ <pyarrow.Int64Scalar: 1>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min(arr2)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
+
+ >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+ >>> pc.min(arr3)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+ <pyarrow.DoubleScalar: None>
+
+ This function also works with string values.
+
+ >>> arr4 = pa.array(["z", None, "y", "x"])
+ >>> pc.min(arr4)
+ <pyarrow.StringScalar: 'x'>
+ """
+
+function_doc_additions["max"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.max(arr1)
+ <pyarrow.Int64Scalar: 3>
+
+ Using `skip_nulls` to handle null values.
Review Comment:
```suggestion
Using ``skip_nulls`` to handle null values.
```
##########
python/pyarrow/_compute_docstrings.py:
##########
@@ -54,3 +54,105 @@
>>> modes[1]
<pyarrow.StructScalar: [('mode', 1), ('count', 2)]>
"""
+
+function_doc_additions["min"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min(arr1)
+ <pyarrow.Int64Scalar: 1>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min(arr2)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
+
+ >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+ >>> pc.min(arr3)
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+ <pyarrow.DoubleScalar: 1.0>
+ >>> pc.min(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+ <pyarrow.DoubleScalar: None>
+
+ This function also works with string values.
+
+ >>> arr4 = pa.array(["z", None, "y", "x"])
+ >>> pc.min(arr4)
+ <pyarrow.StringScalar: 'x'>
+ """
+
+function_doc_additions["max"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.max(arr1)
+ <pyarrow.Int64Scalar: 3>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.max(arr2)
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr2, skip_nulls=False)
+ <pyarrow.DoubleScalar: None>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
+
+ >>> arr3 = pa.array([1.0, None, float("nan"), 3.0])
+ >>> pc.max(arr3)
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=3))
+ <pyarrow.DoubleScalar: 3.0>
+ >>> pc.max(arr3, options=pc.ScalarAggregateOptions(min_count=4))
+ <pyarrow.DoubleScalar: None>
+
+ This function also works with string values.
+
+ >>> arr4 = pa.array(["z", None, "y", "x"])
+ >>> pc.max(arr4)
+ <pyarrow.StringScalar: 'z'>
+ """
+
+function_doc_additions["min_max"] = """
+ Examples
+ --------
+ >>> import pyarrow as pa
+ >>> import pyarrow.compute as pc
+ >>> arr1 = pa.array([1, 1, 2, 2, 3, 2, 2, 2])
+ >>> pc.min_max(arr1)
+ <pyarrow.StructScalar: [('min', 1), ('max', 3)]>
+
+ Using `skip_nulls` to handle null values.
+
+ >>> arr2 = pa.array([1.0, None, 2.0, 3.0])
+ >>> pc.min_max(arr2)
+ <pyarrow.StructScalar: [('min', 1.0), ('max', 3.0)]>
+ >>> pc.min_max(arr2, skip_nulls=False)
+ <pyarrow.StructScalar: [('min', None), ('max', None)]>
+
+ Using `ScalarAggregateOptions` to control minimum number of non-null
values.
Review Comment:
```suggestion
Using ``ScalarAggregateOptions`` to control minimum number of non-null
values.
```
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]