edponce commented on a change in pull request #11793: URL: https://github.com/apache/arrow/pull/11793#discussion_r760223014
########## File path: cpp/src/arrow/compute/kernels/scalar_compare.cc ########## @@ -439,6 +472,329 @@ struct ScalarMinMax { } }; +template <typename Type, typename Op> +struct BinaryScalarMinMax { + using ArrayType = typename TypeTraits<Type>::ArrayType; + using BuilderType = typename TypeTraits<Type>::BuilderType; + using offset_type = typename Type::offset_type; + + static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) { + const ElementWiseAggregateOptions& options = MinMaxState::Get(ctx); + if (std::all_of(batch.values.begin(), batch.values.end(), + [](const Datum& d) { return d.is_scalar(); })) { + return ExecOnlyScalar(ctx, options, batch, out); + } + return ExecContainingArrays(ctx, options, batch, out); + } + + static Status ExecOnlyScalar(KernelContext* ctx, + const ElementWiseAggregateOptions& options, + const ExecBatch& batch, Datum* out) { + if (batch.values.empty()) { + return Status::OK(); + } + auto output = checked_cast<BaseBinaryScalar*>(out->scalar().get()); + if (!options.skip_nulls) { + // any nulls in the input will produce a null output + for (const auto& value : batch.values) { + if (!value.scalar()->is_valid) { + output->is_valid = false; + return Status::OK(); + } + } + } + const auto& first_scalar = *batch.values.front().scalar(); + string_view result = UnboxScalar<Type>::Unbox(first_scalar); + bool valid = first_scalar.is_valid; + for (size_t i = 1; i < batch.values.size(); i++) { + const auto& scalar = *batch[i].scalar(); + if (!scalar.is_valid) { + DCHECK(options.skip_nulls); + continue; + } else { + string_view value = UnboxScalar<Type>::Unbox(scalar); + result = !valid ? value : Op::Call(result, value); + valid = true; + } + } + if (valid) { + ARROW_ASSIGN_OR_RAISE(output->value, ctx->Allocate(result.size())); + std::copy(result.begin(), result.end(), output->value->mutable_data()); + output->is_valid = true; + } else { + output->is_valid = false; + } + return Status::OK(); + } + + static Status ExecContainingArrays(KernelContext* ctx, + const ElementWiseAggregateOptions& options, + const ExecBatch& batch, Datum* out) { + // Presize data to avoid reallocations + int64_t final_size = 0; + for (int64_t i = 0; i < batch.length; i++) { + auto size = CalculateRowSize(options, batch, i); + if (size > 0) final_size += size; + } + BuilderType builder(ctx->memory_pool()); + RETURN_NOT_OK(builder.Reserve(batch.length)); + RETURN_NOT_OK(builder.ReserveData(final_size)); + + std::vector<util::optional<string_view>> valid_cols(batch.values.size()); + for (size_t row = 0; row < static_cast<size_t>(batch.length); row++) { + size_t num_valid = 0; + for (size_t col = 0; col < batch.values.size(); col++) { + if (batch[col].is_scalar()) { + const auto& scalar = *batch[col].scalar(); + if (scalar.is_valid) { + valid_cols[col] = UnboxScalar<Type>::Unbox(scalar); + num_valid++; + } else { + valid_cols[col] = util::nullopt; + } + } else { + const ArrayData& array = *batch[col].array(); + if (!array.MayHaveNulls() || + bit_util::GetBit(array.buffers[0]->data(), array.offset + row)) { + const offset_type* offsets = array.GetValues<offset_type>(1); + const uint8_t* data = array.GetValues<uint8_t>(2, /*absolute_offset=*/0); + const int64_t length = offsets[row + 1] - offsets[row]; + valid_cols[col] = + string_view(reinterpret_cast<const char*>(data + offsets[row]), length); + num_valid++; + } else { + valid_cols[col] = util::nullopt; + } + } + } + + if (num_valid == 0 || (num_valid < batch.values.size() && !options.skip_nulls)) { + // We had some nulls + builder.UnsafeAppendNull(); + continue; + } + util::optional<string_view> result = valid_cols.front(); + for (size_t col = 1; col < batch.values.size(); ++col) { + util::optional<string_view> value = valid_cols[col]; + if (!value) { + DCHECK(options.skip_nulls); + continue; + } + result = !result ? *value : Op::Call(*result, *value); + } + if (result) { + builder.UnsafeAppend(*result); + } else { + builder.UnsafeAppendNull(); + } + } + + std::shared_ptr<Array> string_array; + RETURN_NOT_OK(builder.Finish(&string_array)); + *out = *string_array->data(); + out->mutable_array()->type = batch[0].type(); + DCHECK_EQ(batch.length, out->array()->length); + DCHECK_GE(final_size, + checked_cast<const ArrayType&>(*string_array).total_values_length()); + return Status::OK(); + } + + // Compute the length of the output for the given position, or -1 if it would be null. + static int64_t CalculateRowSize(const ElementWiseAggregateOptions& options, + const ExecBatch& batch, const int64_t index) { + const auto num_args = batch.values.size(); + int64_t final_size = 0; + for (size_t i = 0; i < num_args; i++) { + int64_t element_size = 0; + bool valid = true; + if (batch[i].is_scalar()) { + const auto& scalar = *batch[i].scalar(); + valid = scalar.is_valid; + element_size = static_cast<int64_t>(UnboxScalar<Type>::Unbox(scalar).size()); + } else { + const ArrayData& array = *batch[i].array(); + valid = !array.MayHaveNulls() || + bit_util::GetBit(array.buffers[0]->data(), array.offset + index); + const offset_type* offsets = array.GetValues<offset_type>(1); + element_size = offsets[index + 1] - offsets[index]; + } + if (!valid) { + if (options.skip_nulls) { + continue; + } + return -1; + } + // Conservative estimation of the element size. + final_size = std::max(final_size, element_size); + } + return final_size; + } +}; + +template <typename Op> +struct FixedSizeBinaryScalarMinMax { + static Status Exec(KernelContext* ctx, const ExecBatch& batch, Datum* out) { + const ElementWiseAggregateOptions& options = MinMaxState::Get(ctx); + if (std::all_of(batch.values.begin(), batch.values.end(), + [](const Datum& d) { return d.is_scalar(); })) { + return ExecOnlyScalar(ctx, options, batch, out); + } + return ExecContainingArrays(ctx, options, batch, out); + } + + static Status ExecOnlyScalar(KernelContext* ctx, + const ElementWiseAggregateOptions& options, + const ExecBatch& batch, Datum* out) { + if (batch.values.empty()) { + return Status::OK(); + } + BaseBinaryScalar* output = checked_cast<BaseBinaryScalar*>(out->scalar().get()); + const size_t num_args = batch.values.size(); + + const auto batch_type = batch[0].type(); + const auto binary_type = checked_cast<const FixedSizeBinaryType*>(batch_type.get()); + int64_t final_size = CalculateRowSize(options, batch, 0, binary_type->byte_width()); + if (final_size < 0) { + output->is_valid = false; + return Status::OK(); + } + string_view result = + UnboxScalar<FixedSizeBinaryType>::Unbox(*batch.values.front().scalar()); + for (size_t i = 1; i < num_args; i++) { + const auto& scalar = *batch[i].scalar(); + if (!scalar.is_valid && options.skip_nulls) { + continue; + } + if (scalar.is_valid) { + string_view value = UnboxScalar<FixedSizeBinaryType>::Unbox(scalar); + result = result.empty() ? value : Op::Call(result, value); + } + } + if (!result.empty()) { + ARROW_ASSIGN_OR_RAISE(output->value, ctx->Allocate(final_size)); + uint8_t* buf = output->value->mutable_data(); + buf = std::copy(result.begin(), result.end(), buf); + output->is_valid = true; + DCHECK_GE(final_size, buf - output->value->mutable_data()); + } + return Status::OK(); + } + + static Status ExecContainingArrays(KernelContext* ctx, + const ElementWiseAggregateOptions& options, + const ExecBatch& batch, Datum* out) { + const auto batch_type = batch[0].type(); + const auto binary_type = checked_cast<const FixedSizeBinaryType*>(batch_type.get()); + int32_t byte_width = binary_type->byte_width(); + // Presize data to avoid reallocations + int64_t final_size = 0; + for (int64_t i = 0; i < batch.length; i++) { + auto size = CalculateRowSize(options, batch, i, byte_width); + if (size > 0) final_size += size; + } + FixedSizeBinaryBuilder builder(batch_type); + RETURN_NOT_OK(builder.Reserve(batch.length)); + RETURN_NOT_OK(builder.ReserveData(final_size)); + + std::vector<string_view> valid_cols(batch.values.size()); + for (size_t row = 0; row < static_cast<size_t>(batch.length); row++) { + size_t num_valid = 0; + for (size_t col = 0; col < batch.values.size(); col++) { + if (batch[col].is_scalar()) { + const auto& scalar = *batch[col].scalar(); + if (scalar.is_valid) { + valid_cols[col] = UnboxScalar<FixedSizeBinaryType>::Unbox(scalar); + num_valid++; + } else { + valid_cols[col] = string_view(); + } + } else { + const ArrayData& array = *batch[col].array(); + if (!array.MayHaveNulls() || + bit_util::GetBit(array.buffers[0]->data(), array.offset + row)) { + const uint8_t* data = array.GetValues<uint8_t>(1, /*absolute_offset=*/0); + valid_cols[col] = string_view( + reinterpret_cast<const char*>(data) + row * byte_width, byte_width); + num_valid++; + } else { + valid_cols[col] = string_view(); + } + } + } + + if (num_valid < batch.values.size() && !options.skip_nulls) { + // We had some nulls + builder.UnsafeAppendNull(); + continue; + } + string_view result = valid_cols.front(); + for (size_t col = 1; col < batch.values.size(); ++col) { + string_view value = valid_cols[col]; + if (value.empty()) { + DCHECK(options.skip_nulls); + continue; + } + result = result.empty() ? value : Op::Call(result, value); + } + if (result.empty()) { + builder.UnsafeAppendNull(); + } else { + builder.UnsafeAppend(result); + } + } + + std::shared_ptr<Array> string_array; + RETURN_NOT_OK(builder.Finish(&string_array)); + *out = *string_array->data(); + out->mutable_array()->type = batch[0].type(); + DCHECK_EQ(batch.length, out->array()->length); + return Status::OK(); + } + + // Compute the length of the output for the given position, or -1 if it would be null. + static int64_t CalculateRowSize(const ElementWiseAggregateOptions& options, + const ExecBatch& batch, const int64_t index, + int32_t byte_width) { + const auto num_args = batch.values.size(); + int32_t final_size = 0; + for (size_t i = 0; i < num_args; i++) { + bool valid = true; + if (batch[i].is_scalar()) { + const auto& scalar = *batch[i].scalar(); + valid = scalar.is_valid; + } else { + const ArrayData& array = *batch[i].array(); + valid = !array.MayHaveNulls() || + bit_util::GetBit(array.buffers[0]->data(), array.offset + index); + } + if (!valid) { + if (options.skip_nulls) { + continue; + } + return -1; + } + final_size = std::max(final_size, byte_width); + } + return final_size; + } +}; + +Result<ValueDescr> ResolveMinOrMaxOutputType(KernelContext*, + const std::vector<ValueDescr>& args) { + if (args.empty()) { + return null(); + } + auto first_type = args[0].type; + for (size_t i = 1; i < args.size(); ++i) { + auto type = args[i].type; + if (*type != *first_type) { + return Status::NotImplemented( + "Different decimal types not implemented for {min, max}_element_wise"); + } Review comment: I see, skimmed too fast and did not notice your function is the resolver. -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@arrow.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org