echauchot commented on a change in pull request #11055: [BEAM-9436] Improve GBK 
in spark structured streaming runner
URL: https://github.com/apache/beam/pull/11055#discussion_r398501823
 
 

 ##########
 File path: 
runners/spark/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/batch/functions/GroupAlsoByWindowViaOutputBufferFn.java
 ##########
 @@ -65,9 +65,15 @@ public GroupAlsoByWindowViaOutputBufferFn(
 
   @Override
   public Iterator<WindowedValue<KV<K, Iterable<InputT>>>> call(
-      KV<K, Iterable<WindowedValue<InputT>>> kv) throws Exception {
-    K key = kv.getKey();
-    Iterable<WindowedValue<InputT>> values = kv.getValue();
+      K key, Iterator<WindowedValue<KV<K, InputT>>> iterator) throws Exception 
{
+
+    // we have to meterialize the Iterator because 
ReduceFnRunner.processElements expects
+    // ArrayList<WindowedValue<InputT>> and not Iterator<WindowedValue<KV<K, 
InputT>>>
+    ArrayList<WindowedValue<InputT>> values = new ArrayList<>();
+    while (iterator.hasNext()) {
+      WindowedValue<KV<K, InputT>> wv = iterator.next();
+      values.add(wv.withValue(wv.getValue().getValue()));
 
 Review comment:
   I just ran this test: `-Xms8g -Xmx8g -Prunner=":runners:spark" 
-PloadTest.mainClass="org.apache.beam.sdk.loadtests.GroupByKeyLoadTest" 
-PloadTest.args="--fanout=1 --iterations=1 --streaming=false 
--runner=SparkStructuredStreamingRunner 
--sourceOptions={\"numRecords\":200000,\"keySizeBytes\":100000,\"valueSizeBytes\":10000,
 \"hotKeyFraction\":1.0, \"numHotKeys\":1}"` So one sole key that receives all 
the values in a 8GO JVM to simulate an OOM.
   And I observe a spill to disk and no out of memory as I said:
   before run /dev/mapper/ubuntu--vg-root   368G     23G  327G   7% /
   after run  /dev/mapper/ubuntu--vg-root   368G     27G  323G   8% /
   So +4G on disk in /tmp
   runtime_sec                   680.092
   

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to