PhilippeMoussalli commented on code in PR #22587:
URL: https://github.com/apache/beam/pull/22587#discussion_r964473694


##########
examples/notebooks/beam-ml/dataframe_api_preprocessing.ipynb:
##########
@@ -0,0 +1,1907 @@
+{
+  "cells": [
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Overview\n",
+        "\n",
+        "One of the most common tools used for data exploration and 
pre-processing is [pandas 
DataFrames](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html).
 Pandas has become very popular for its ease of use. It has very intuitive 
methods to perform common analytical tasks and data pre-processing. \n",
+        "\n",
+        "Pandas loads all of the data into memory on a single machine (one 
node) for rapid execution. This works well when dealing with small-scale 
datasets. However, many projects involve datasets that can grow too big to fit 
in memory. These use cases generally require the usage of parallel data 
processing frameworks such as Apache Beam.\n",
+        "\n",
+        "\n",
+        "## Beam DataFrames\n",
+        "\n",
+        "\n",
+        "Beam DataFrames provide a pandas-like DataFrame\n",
+        "API to declare and define Beam processing pipelines. It provides a 
familiar interface for machine learning practioners to build complex 
data-processing pipelines by only invoking standard pandas commands.\n",
+        "\n",
+        "> ℹ️ To learn more about Beam DataFrames, take a look at the\n",
+        "[Beam DataFrames 
overview](https://beam.apache.org/documentation/dsls/dataframes/overview) 
page.\n",
+        "\n",
+        "## Tutorial outline\n",
+        "\n",
+        "In this notebook, we walk through the use of the Beam DataFrames API 
to perform common data exploration as well as pre-processing steps that are 
necessary to prepare your dataset for machine learning model training and 
inference, such as:  \n",
+        "\n",
+        "*   Removing unwanted columns.\n",
+        "*   One-hot encoding categorical columns.\n",
+        "*   Normalizing numerical columns.\n",
+        "\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "iFZC1inKuUCy"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Installation\n",
+        "\n",
+        "First, we need to install Apache Beam with the `interactive` 
component to be able to use the Interactive runner. The latest implemented 
DataFrames API methods invoked in this notebook are available in Beam 
<b>2.41</b> or later.\n"
+      ],
+      "metadata": {
+        "id": "A0f2HJ22D4lt"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "pCjwrwNWnuqI"
+      },
+      "source": [
+        "**Option 1:** Install latest version with implemented df.mean()\n",
+        "\n",
+        "TODO: Remove this text later"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "-OJC0Xn5Um-C"
+      },
+      "outputs": [],
+      "source": [
+        "!git clone https://github.com/apache/beam.git\n";,
+        "\n",
+        "!cd beam/sdks/python && pip3 install -r build-requirements.txt \n",
+        "\n",
+        "%pip install -e beam/sdks/python/.[interactive,gcp]"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "xfXzNzA1n3ZP"
+      },
+      "source": [
+        "**Option 2:** Install latest release version   \n",
+        "\n",
+        "**[12/07/2022]:** df.mean() is currently not supported for this 
version (beam 2.40)\n",
+        "\n",
+        "TODO: Remove this text later"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "4xY7ECJZOuJj"
+      },
+      "outputs": [],
+      "source": [
+        "! pip install apache-beam[interactive,gcp]"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Part I : Local exploration with the Interactive Beam runner\n",
+        "We first use the [Interactive 
Beam](https://beam.apache.org/releases/pydoc/2.20.0/apache_beam.runners.interactive.interactive_beam.html)
 to explore and develop our pipeline.\n",
+        "This allows us to quickly test our pipeline locally before running it 
on a distributed runner. \n",
+        "\n",
+        "\n",
+        "> ℹ️ In this section, we will only be working with a subset of the 
original dataset since we're only using the the compute resources of the 
notebook instance.\n"
+      ],
+      "metadata": {
+        "id": "3NO6RgB7GkkE"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "5I3G094hoB1P"
+      },
+      "source": [
+        "# Loading the data\n",
+        "\n",
+        "Pandas has the\n",
+        
"[`pandas.read_csv`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)\n",
+        "function to easily read CSV files into DataFrames.\n",
+        "We're using the beam\n",
+        
"[`beam.dataframe.io.read_csv`](https://beam.apache.org/releases/pydoc/current/apache_beam.dataframe.io.html#apache_beam.dataframe.io.read_csv)\n",
+        "function that emulates `pandas.read_csv`. The main difference between 
them is that the beam method returns a deferred Beam DataFrame while pandas 
return a standard DataFrame.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "X3_OB9cAULav"
+      },
+      "outputs": [],
+      "source": [
+        "import os\n",
+        "\n",
+        "import numpy as np\n",
+        "import pandas as pd \n",
+        "import apache_beam as beam\n",
+        "import apache_beam.runners.interactive.interactive_beam as ib\n",
+        "from apache_beam.runners.interactive.interactive_runner import 
InteractiveRunner\n",
+        "from apache_beam.runners.dataflow import DataflowRunner\n",
+        "\n",
+        "# Available options: [sample_1000, sample_10000, sample_100000, 
sample] where\n",
+        "# sample contains all of the dataset (around 1000000 samples)\n",
+        "file_location = 
'gs://apache-beam-samples/nasa_jpl_asteroid/sample_10000.csv'\n",
+        "\n",
+        "# Initialize pipline\n",
+        "p = beam.Pipeline(InteractiveRunner())\n",
+        "\n",
+        "# Create a deferred Beam DataFrame with the contents of our csv 
file.\n",
+        "beam_df = p | beam.dataframe.io.read_csv(file_location, 
splittable=True)\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "paf7yf3YpCh8"
+      },
+      "source": [
+        "# Data pre-processing\n",
+        "\n",
+        "## Dataset description \n",
+        "\n",
+        "### [NASA - Nearest Earth Objects 
dataset](https://cneos.jpl.nasa.gov/ca/)\n",
+        "There are an innumerable number of objects in the outer space. Some 
of them are closer than we think. Even though we might think that a distance of 
70,000 Km can not potentially harm us, but at an astronomical scale, this is a 
very small distance and can disrupt many natural phenomena. \n",
+        "\n",
+        "These objects/asteroids can thus prove to be harmful. Hence, it is 
wise to know what is surrounding us and what can harm us amongst those. Thus, 
this dataset compiles the list of NASA certified asteroids that are classified 
as the nearest earth object."
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "\n",
+        "Let's first inspect the columns of our dataset and their types"
+      ],
+      "metadata": {
+        "id": "cvAu5T0ENjuQ"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";
+        },
+        "id": "LwW77ixE-pjR",
+        "outputId": "c24ff83d-3a13-47a6-c9c2-3978729fde82"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "spk_id                       int64\n",
+              "full_name                   object\n",
+              "near_earth_object           object\n",
+              "absolute_magnitude         float64\n",
+              "diameter                   float64\n",
+              "albedo                     float64\n",
+              "diameter_sigma             float64\n",
+              "eccentricity               float64\n",
+              "inclination                float64\n",
+              "moid_ld                    float64\n",
+              "object_class                object\n",
+              "semi_major_axis_au_unit    float64\n",
+              "hazardous_flag              object\n",
+              "dtype: object"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 4
+        }
+      ],
+      "source": [
+        "beam_df.dtypes"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "When using Interactive Beam, we can use `ib.collect()` to bring a 
Beam DataFrame into local memory as a Pandas DataFrame."
+      ],
+      "metadata": {
+        "id": "1Wa6fpbyQige"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 746
+        },
+        "id": "DPxkAmkpq4Xv",
+        "outputId": "14fa80de-2dee-4963-99d8-3e321f949ff8"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_a986c6cc61ed5a5b622e163d92f73775\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_a986c6cc61ed5a5b622e163d92f73775\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_a986c6cc61ed5a5b622e163d92f73775\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "       spk_id                   full_name near_earth_object  
\\\n",
+              "0     2000001                     1 Ceres                 N   
\n",
+              "1     2000002                    2 Pallas                 N   
\n",
+              "2     2000003                      3 Juno                 N   
\n",
+              "3     2000004                     4 Vesta                 N   
\n",
+              "4     2000005                   5 Astraea                 N   
\n",
+              "...       ...                         ...               ...   
\n",
+              "9994  2009995    9995 Alouette (4805 P-L)                 N   
\n",
+              "9995  2009996         9996 ANS (9070 P-L)                 N   
\n",
+              "9996  2009997        9997 COBE (1217 T-1)                 N   
\n",
+              "9997  2009998         9998 ISO (1293 T-1)                 N   
\n",
+              "9998  2009999       9999 Wiles (4196 T-2)                 N   
\n",
+              "\n",
+              "      absolute_magnitude  diameter  albedo  diameter_sigma  
eccentricity  \\\n",
+              "0                   3.40   939.400  0.0900           0.200      
0.076009   \n",
+              "1                   4.20   545.000  0.1010          18.000      
0.229972   \n",
+              "2                   5.33   246.596  0.2140          10.594      
0.256936   \n",
+              "3                   3.00   525.400  0.4228           0.200      
0.088721   \n",
+              "4                   6.90   106.699  0.2740           3.140      
0.190913   \n",
+              "...                  ...       ...     ...             ...      
     ...   \n",
+              "9994               15.10     2.564  0.2450           0.550      
0.160610   \n",
+              "9995               13.60     8.978  0.1130           0.376      
0.235174   \n",
+              "9996               14.30       NaN     NaN             NaN      
0.113059   \n",
+              "9997               15.10     2.235  0.3880           0.373      
0.093852   \n",
+              "9998               13.00     7.148  0.2620           0.065      
0.071351   \n",
+              "\n",
+              "      inclination     moid_ld object_class  
semi_major_axis_au_unit  \\\n",
+              "0       10.594067  620.640533          MBA                 
2.769165   \n",
+              "1       34.832932  480.348639          MBA                 
2.773841   \n",
+              "2       12.991043  402.514639          MBA                 
2.668285   \n",
+              "3        7.141771  443.451432          MBA                 
2.361418   \n",
+              "4        5.367427  426.433027          MBA                 
2.574037   \n",
+              "...           ...         ...          ...                      
...   \n",
+              "9994     2.311731  388.723233          MBA                 
2.390249   \n",
+              "9995     7.657713  444.194746          MBA                 
2.796605   \n",
+              "9996     2.459643  495.460110          MBA                 
2.545674   \n",
+              "9997     3.912263  373.848377          MBA                 
2.160961   \n",
+              "9998     3.198839  632.144398          MBA                 
2.839917   \n",
+              "\n",
+              "     hazardous_flag  \n",
+              "0                 N  \n",
+              "1                 N  \n",
+              "2                 N  \n",
+              "3                 N  \n",
+              "4                 N  \n",
+              "...             ...  \n",
+              "9994              N  \n",
+              "9995              N  \n",
+              "9996              N  \n",
+              "9997              N  \n",
+              "9998              N  \n",
+              "\n",
+              "[9999 rows x 13 columns]"
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-0161aa69-d50f-4d6f-84c1-10dacb278880\">\n",
+              "    <div class=\"colab-df-container\">\n",
+              "      <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>spk_id</th>\n",
+              "      <th>full_name</th>\n",
+              "      <th>near_earth_object</th>\n",
+              "      <th>absolute_magnitude</th>\n",
+              "      <th>diameter</th>\n",
+              "      <th>albedo</th>\n",
+              "      <th>diameter_sigma</th>\n",
+              "      <th>eccentricity</th>\n",
+              "      <th>inclination</th>\n",
+              "      <th>moid_ld</th>\n",
+              "      <th>object_class</th>\n",
+              "      <th>semi_major_axis_au_unit</th>\n",
+              "      <th>hazardous_flag</th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>0</th>\n",
+              "      <td>2000001</td>\n",
+              "      <td>1 Ceres</td>\n",
+              "      <td>N</td>\n",
+              "      <td>3.40</td>\n",
+              "      <td>939.400</td>\n",
+              "      <td>0.0900</td>\n",
+              "      <td>0.200</td>\n",
+              "      <td>0.076009</td>\n",
+              "      <td>10.594067</td>\n",
+              "      <td>620.640533</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.769165</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>1</th>\n",
+              "      <td>2000002</td>\n",
+              "      <td>2 Pallas</td>\n",
+              "      <td>N</td>\n",
+              "      <td>4.20</td>\n",
+              "      <td>545.000</td>\n",
+              "      <td>0.1010</td>\n",
+              "      <td>18.000</td>\n",
+              "      <td>0.229972</td>\n",
+              "      <td>34.832932</td>\n",
+              "      <td>480.348639</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.773841</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>2</th>\n",
+              "      <td>2000003</td>\n",
+              "      <td>3 Juno</td>\n",
+              "      <td>N</td>\n",
+              "      <td>5.33</td>\n",
+              "      <td>246.596</td>\n",
+              "      <td>0.2140</td>\n",
+              "      <td>10.594</td>\n",
+              "      <td>0.256936</td>\n",
+              "      <td>12.991043</td>\n",
+              "      <td>402.514639</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.668285</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>3</th>\n",
+              "      <td>2000004</td>\n",
+              "      <td>4 Vesta</td>\n",
+              "      <td>N</td>\n",
+              "      <td>3.00</td>\n",
+              "      <td>525.400</td>\n",
+              "      <td>0.4228</td>\n",
+              "      <td>0.200</td>\n",
+              "      <td>0.088721</td>\n",
+              "      <td>7.141771</td>\n",
+              "      <td>443.451432</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.361418</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>4</th>\n",
+              "      <td>2000005</td>\n",
+              "      <td>5 Astraea</td>\n",
+              "      <td>N</td>\n",
+              "      <td>6.90</td>\n",
+              "      <td>106.699</td>\n",
+              "      <td>0.2740</td>\n",
+              "      <td>3.140</td>\n",
+              "      <td>0.190913</td>\n",
+              "      <td>5.367427</td>\n",
+              "      <td>426.433027</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.574037</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>...</th>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9994</th>\n",
+              "      <td>2009995</td>\n",
+              "      <td>9995 Alouette (4805 P-L)</td>\n",
+              "      <td>N</td>\n",
+              "      <td>15.10</td>\n",
+              "      <td>2.564</td>\n",
+              "      <td>0.2450</td>\n",
+              "      <td>0.550</td>\n",
+              "      <td>0.160610</td>\n",
+              "      <td>2.311731</td>\n",
+              "      <td>388.723233</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.390249</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9995</th>\n",
+              "      <td>2009996</td>\n",
+              "      <td>9996 ANS (9070 P-L)</td>\n",
+              "      <td>N</td>\n",
+              "      <td>13.60</td>\n",
+              "      <td>8.978</td>\n",
+              "      <td>0.1130</td>\n",
+              "      <td>0.376</td>\n",
+              "      <td>0.235174</td>\n",
+              "      <td>7.657713</td>\n",
+              "      <td>444.194746</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.796605</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9996</th>\n",
+              "      <td>2009997</td>\n",
+              "      <td>9997 COBE (1217 T-1)</td>\n",
+              "      <td>N</td>\n",
+              "      <td>14.30</td>\n",
+              "      <td>NaN</td>\n",
+              "      <td>NaN</td>\n",
+              "      <td>NaN</td>\n",
+              "      <td>0.113059</td>\n",
+              "      <td>2.459643</td>\n",
+              "      <td>495.460110</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.545674</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9997</th>\n",
+              "      <td>2009998</td>\n",
+              "      <td>9998 ISO (1293 T-1)</td>\n",
+              "      <td>N</td>\n",
+              "      <td>15.10</td>\n",
+              "      <td>2.235</td>\n",
+              "      <td>0.3880</td>\n",
+              "      <td>0.373</td>\n",
+              "      <td>0.093852</td>\n",
+              "      <td>3.912263</td>\n",
+              "      <td>373.848377</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.160961</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9998</th>\n",
+              "      <td>2009999</td>\n",
+              "      <td>9999 Wiles (4196 T-2)</td>\n",
+              "      <td>N</td>\n",
+              "      <td>13.00</td>\n",
+              "      <td>7.148</td>\n",
+              "      <td>0.2620</td>\n",
+              "      <td>0.065</td>\n",
+              "      <td>0.071351</td>\n",
+              "      <td>3.198839</td>\n",
+              "      <td>632.144398</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.839917</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "<p>9999 rows × 13 columns</p>\n",
+              "</div>\n",
+              "      <button class=\"colab-df-convert\" 
onclick=\"convertToInteractive('df-0161aa69-d50f-4d6f-84c1-10dacb278880')\"\n",
+              "              title=\"Convert this dataframe to an interactive 
table.\"\n",
+              "              style=\"display:none;\">\n",
+              "        \n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\"; 
height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "       width=\"24px\">\n",
+              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
+              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 
2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 
7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 
7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 
1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 
1.47 1.35L5.41 20z\"/>\n",
+              "  </svg>\n",
+              "      </button>\n",
+              "      \n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      flex-wrap:wrap;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 
3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "      <script>\n",
+              "        const buttonEl =\n",
+              "          
document.querySelector('#df-0161aa69-d50f-4d6f-84c1-10dacb278880 
button.colab-df-convert');\n",
+              "        buttonEl.style.display =\n",
+              "          google.colab.kernel.accessAllowed ? 'block' : 
'none';\n",
+              "\n",
+              "        async function convertToInteractive(key) {\n",
+              "          const element = 
document.querySelector('#df-0161aa69-d50f-4d6f-84c1-10dacb278880');\n",
+              "          const dataTable =\n",
+              "            await 
google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                     [key], 
{});\n",
+              "          if (!dataTable) return;\n",
+              "\n",
+              "          const docLinkHtml = 'Like what you see? Visit the ' 
+\n",
+              "            '<a target=\"_blank\" 
href=https://colab.research.google.com/notebooks/data_table.ipynb>data table 
notebook</a>'\n",
+              "            + ' to learn more about interactive tables.';\n",
+              "          element.innerHTML = '';\n",
+              "          dataTable['output_type'] = 'display_data';\n",
+              "          await google.colab.output.renderOutput(dataTable, 
element);\n",
+              "          const docLink = document.createElement('div');\n",
+              "          docLink.innerHTML = docLinkHtml;\n",
+              "          element.appendChild(docLink);\n",
+              "        }\n",
+              "      </script>\n",
+              "    </div>\n",
+              "  </div>\n",
+              "  "
+            ]
+          },
+          "metadata": {},
+          "execution_count": 5
+        }
+      ],
+      "source": [
+        "ib.collect(beam_df)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "We can see that our datasets consists of both:\n",
+        "\n",
+        "* **Numerical columns:** These columns need to be transformed through 
[normalization](https://en.wikipedia.org/wiki/Normalization_(statistics)) 
before they can be used for training a machine learning model.\n",
+        "\n",
+        "* **Categorical columns:** We need to transform those columns with 
[one-hot 
encoding](https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/)
 to use them during training. \n"
+      ],
+      "metadata": {
+        "id": "8jV9odKhNyF2"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "D9uJtHLSSAMC"
+      },
+      "source": [
+        "Before executing any transformations, we need to check if all the 
columns can be used for model training. Let's first have a look at the column 
description as provided by the [JPL 
website](https://ssd.jpl.nasa.gov/sbdb_query.cgi):\n",

Review Comment:
   woops need to be used indeed :) nice catch!



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to