chamikaramj commented on code in PR #23619:
URL: https://github.com/apache/beam/pull/23619#discussion_r997210939
##########
examples/multi-language/src/main/java/org/apache/beam/examples/multilanguage/PythonDataframeWordCount.java:
##########
@@ -49,7 +49,6 @@
* ./gradlew :examples:multi-language:pythonDataframeWordCount --args=" \
* --runner=DataflowRunner \
* --output=gs://{$OUTPUT_BUCKET}/count \
- * --experiments=use_runner_v2 \
Review Comment:
Yeah, we don't need this anymore.
##########
examples/java/src/main/java/org/apache/beam/examples/multilanguage/SklearnMnistClassification.java:
##########
@@ -0,0 +1,148 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements. See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership. The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License. You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.beam.examples.multilanguage;
+
+import java.util.ArrayList;
+import java.util.List;
+import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.coders.VarLongCoder;
+import org.apache.beam.sdk.extensions.python.transforms.RunInference;
+import org.apache.beam.sdk.io.TextIO;
+import org.apache.beam.sdk.options.Default;
+import org.apache.beam.sdk.options.Description;
+import org.apache.beam.sdk.options.PipelineOptions;
+import org.apache.beam.sdk.options.PipelineOptionsFactory;
+import org.apache.beam.sdk.options.Validation.Required;
+import org.apache.beam.sdk.schemas.Schema;
+import org.apache.beam.sdk.schemas.Schema.FieldType;
+import org.apache.beam.sdk.transforms.Filter;
+import org.apache.beam.sdk.transforms.MapElements;
+import org.apache.beam.sdk.transforms.SerializableFunction;
+import org.apache.beam.sdk.transforms.SimpleFunction;
+import org.apache.beam.sdk.values.KV;
+import org.apache.beam.sdk.values.PCollection;
+import org.apache.beam.sdk.values.Row;
+import org.apache.beam.vendor.guava.v26_0_jre.com.google.common.base.Splitter;
+
+/**
+ * An example Java MUlti-language pipeline that Performs image classification
on handwritten digits
+ * from the <a href="https://en.wikipedia.org/wiki/MNIST_database">MNIST</a>
database.
+ *
+ * <p>For more details and instructions for running this please see <a
+ *
href="https://github.com/apache/beam/tree/master/examples/multi-language">here</a>.
+ */
+public class SklearnMnistClassification {
+
+ private String getModelLoaderScript() {
+ String s = "from apache_beam.ml.inference.sklearn_inference import
SklearnModelHandlerNumpy\n";
+ s = s + "from apache_beam.ml.inference.base import KeyedModelHandler\n";
+ s = s + "def get_model_handler(model_uri):\n";
+ s = s + " return
KeyedModelHandler(SklearnModelHandlerNumpy(model_uri))\n";
+
+ return s;
+ }
+
+ static class FilterFn implements SerializableFunction<String, Boolean> {
+
+ @Override
+ public Boolean apply(String input) {
+ return !input.startsWith("label");
+ }
+ }
+
+ static class KVFn extends SimpleFunction<String, KV<Long, Iterable<Long>>> {
+
+ @Override
+ public KV<Long, Iterable<Long>> apply(String input) {
+ String[] data = Splitter.on(',').splitToList(input).toArray(new String[]
{});
+ Long label = Long.valueOf(data[0]);
+ List<Long> pixels = new ArrayList<Long>();
+ for (int i = 1; i < data.length; i++) {
+ pixels.add(Long.valueOf(data[i]));
+ }
+
+ return KV.of(label, pixels);
+ }
+ }
+
+ static class FormatOutput extends SimpleFunction<KV<Long, Row>, String> {
+
+ @Override
+ public String apply(KV<Long, Row> input) {
+ return input.getKey() + " was mapped to " +
input.getValue().getString("inference");
+ }
+ }
+
+ void runExample(SklearnMnistClassificationOptions options, String
expansionService) {
+ Schema schema =
+ Schema.of(
+ Schema.Field.of("example",
Schema.FieldType.array(Schema.FieldType.INT64)),
+ Schema.Field.of("inference", FieldType.STRING));
+
+ Pipeline pipeline = Pipeline.create(options);
+ PCollection<KV<Long, Iterable<Long>>> col =
+ pipeline
+ .apply(TextIO.read().from(options.getInput()))
+ .apply(Filter.by(new FilterFn()))
+ .apply(MapElements.via(new KVFn()));
+ col.apply(
+ RunInference.ofKVs(getModelLoaderScript(), schema,
VarLongCoder.of())
+ .withKwarg("model_uri", options.getModelPath())
+ .withExpansionService(expansionService))
+ .apply(MapElements.via(new FormatOutput()))
+ .apply(TextIO.write().to(options.getOutput()));
+
+ pipeline.run().waitUntilFinish();
+ }
+
+ public interface SklearnMnistClassificationOptions extends PipelineOptions {
+
+ @Description("Path to an input file that contains labels and pixels to
feed into the model")
+
@Default.String("gs://apache-beam-samples/multi-language/mnist/example_input.csv")
+ String getInput();
+
+ void setInput(String value);
+
+ @Description("Path for storing the output")
+ @Required
+ String getOutput();
+
+ void setOutput(String value);
+
+ @Description(
+ "Path to a model file that contains the pickled file of a scikit-learn
model trained on MNIST data")
+
@Default.String("gs://apache-beam-samples/multi-language/mnist/example_model")
+ String getModelPath();
+
+ void setModelPath(String value);
+
+ /** Set this option to specify Python expansion service URL. */
+ @Description("URL of Python expansion service")
+ @Default.String("")
Review Comment:
The default value should work for all runner after 2.42.0 is released.
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]