PhilippeMoussalli commented on code in PR #22587:
URL: https://github.com/apache/beam/pull/22587#discussion_r1005906158


##########
examples/notebooks/beam-ml/dataframe_api_preprocessing.ipynb:
##########
@@ -0,0 +1,2163 @@
+{
+  "cells": [
+    {
+      "cell_type": "code",
+      "source": [
+        "#@title ###### Licensed to the Apache Software Foundation (ASF), 
Version 2.0 (the \"License\")\n",
+        "\n",
+        "# Licensed to the Apache Software Foundation (ASF) under one\n",
+        "# or more contributor license agreements. See the NOTICE file\n",
+        "# distributed with this work for additional information\n",
+        "# regarding copyright ownership. The ASF licenses this file\n",
+        "# to you under the Apache License, Version 2.0 (the\n",
+        "# \"License\"); you may not use this file except in compliance\n",
+        "# with the License. You may obtain a copy of the License at\n",
+        "#\n",
+        "#   http://www.apache.org/licenses/LICENSE-2.0\n";,
+        "#\n",
+        "# Unless required by applicable law or agreed to in writing,\n",
+        "# software distributed under the License is distributed on an\n",
+        "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
+        "# KIND, either express or implied. See the License for the\n",
+        "# specific language governing permissions and limitations\n",
+        "# under the License."
+      ],
+      "metadata": {
+        "id": "sARMhsXz8yR1",
+        "cellView": "form"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Overview\n",
+        "\n",
+        "One of the most common tools used for data exploration and 
pre-processing is [pandas 
DataFrames](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html).
 Pandas has become very popular for its ease of use. It has very intuitive 
methods to perform common analytical tasks and data pre-processing. \n",
+        "\n",
+        "Pandas loads all of the data into memory on a single machine (one 
node) for rapid execution. This works well when dealing with small-scale 
datasets. However, many projects involve datasets that can grow too big to fit 
in memory. These use cases generally require the usage of parallel data 
processing frameworks such as Apache Beam.\n",
+        "\n",
+        "\n",
+        "## Beam DataFrames\n",
+        "\n",
+        "\n",
+        "Beam DataFrames provide a pandas-like\n",
+        "API to declare and define Beam processing pipelines. It provides a 
familiar interface for machine learning practioners to build complex 
data-processing pipelines by only invoking standard pandas commands.\n",
+        "\n",
+        "> ℹ️ To learn more about Beam DataFrames, take a look at the\n",
+        "[Beam DataFrames 
overview](https://beam.apache.org/documentation/dsls/dataframes/overview) 
page.\n",
+        "\n",
+        "## Tutorial outline\n",
+        "\n",
+        "In this notebook, we walk through the use of the Beam DataFrames API 
to perform common data exploration as well as pre-processing steps that are 
necessary to prepare your dataset for machine learning model training and 
inference, such as:  \n",
+        "\n",
+        "*   Removing unwanted columns.\n",
+        "*   One-hot encoding categorical columns.\n",
+        "*   Normalizing numerical columns.\n",
+        "\n",
+        "\n"
+      ],
+      "metadata": {
+        "id": "iFZC1inKuUCy"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Installation\n",
+        "\n",
+        "As we want to explore the elements within a `PCollection`, we can 
make use of the the Interactive runner by installing Apache Beam with the 
`interactive` component. The latest implemented DataFrames API methods invoked 
in this notebook are available in Beam <b>2.41</b> or later.\n"
+      ],
+      "metadata": {
+        "id": "A0f2HJ22D4lt"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "pCjwrwNWnuqI"
+      },
+      "source": [
+        "**Option 1:** Install latest version with implemented df.mean()\n",
+        "\n",
+        "TODO: Remove "
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "-OJC0Xn5Um-C"
+      },
+      "outputs": [],
+      "source": [
+        "!git clone https://github.com/apache/beam.git\n";,
+        "\n",
+        "!cd beam/sdks/python && pip3 install -r build-requirements.txt \n",
+        "\n",
+        "%pip install -e beam/sdks/python/.[interactive,gcp]"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "xfXzNzA1n3ZP"
+      },
+      "source": [
+        "**Option 2:** Install latest release version   \n",
+        "\n",
+        "**[12/07/2022]:** df.mean() is currently not supported for this 
version (beam 2.40)\n",
+        "\n",
+        "TODO: Remove"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "4xY7ECJZOuJj"
+      },
+      "outputs": [],
+      "source": [
+        "! pip install apache-beam[interactive,gcp]"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# Part I : Local exploration with the Interactive Beam runner\n",
+        "We first use the [Interactive 
Beam](https://beam.apache.org/releases/pydoc/2.20.0/apache_beam.runners.interactive.interactive_beam.html)
 to explore and develop our pipeline.\n",
+        "This allows us to test our code interactively, building out the 
pipeline as we go before deploying it on a distributed runner. \n",
+        "\n",
+        "\n",
+        "> ℹ️ In this section, we will only be working with a subset of the 
original dataset since we're only using the the compute resources of the 
notebook instance.\n"
+      ],
+      "metadata": {
+        "id": "3NO6RgB7GkkE"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "5I3G094hoB1P"
+      },
+      "source": [
+        "# Loading the data\n",
+        "\n",
+        "Pandas has the\n",
+        
"[`pandas.read_csv`](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.read_csv.html)\n",
+        "function to easily read CSV files into DataFrames.\n",
+        "We're using the beam\n",
+        
"[`beam.dataframe.io.read_csv`](https://beam.apache.org/releases/pydoc/current/apache_beam.dataframe.io.html#apache_beam.dataframe.io.read_csv)\n",
+        "function that emulates `pandas.read_csv`. The main difference between 
them is that the beam method returns a deferred Beam DataFrame while pandas 
return a standard DataFrame.\n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 5,
+      "metadata": {
+        "id": "X3_OB9cAULav"
+      },
+      "outputs": [],
+      "source": [
+        "import os\n",
+        "\n",
+        "import numpy as np\n",
+        "import pandas as pd \n",
+        "import apache_beam as beam\n",
+        "import apache_beam.runners.interactive.interactive_beam as ib\n",
+        "from apache_beam import dataframe\n",
+        "from apache_beam.runners.interactive.interactive_runner import 
InteractiveRunner\n",
+        "from apache_beam.runners.dataflow import DataflowRunner\n",
+        "\n",
+        "# Available options: [sample_1000, sample_10000, sample_100000, full] 
where\n",
+        "# sample contains all of the dataset (around 1000000 samples)\n",
+        "\n",
+        "source_csv_file = 
'gs://apache-beam-samples/nasa_jpl_asteroid/sample_10000.csv'\n",
+        "\n",
+        "# Initialize pipline\n",
+        "p = beam.Pipeline(InteractiveRunner())\n",
+        "\n",
+        "# Create a deferred Beam DataFrame with the contents of our csv 
file.\n",
+        "beam_df = p | beam.dataframe.io.read_csv(source_csv_file, 
splittable=True)\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "paf7yf3YpCh8"
+      },
+      "source": [
+        "# Data pre-processing\n",
+        "\n",
+        "## Dataset description \n",
+        "\n",
+        "### [NASA - Nearest Earth Objects 
dataset](https://cneos.jpl.nasa.gov/ca/)\n",
+        "There are an innumerable number of objects in the outer space. Some 
of them are closer than we think. Even though we might think that a distance of 
70,000 Km can not potentially harm us, but at an astronomical scale, this is a 
very small distance and can disrupt many natural phenomena. \n",
+        "\n",
+        "These objects/asteroids can thus prove to be harmful. Hence, it is 
wise to know what is surrounding us and what can harm us amongst those. Thus, 
this dataset compiles the list of NASA certified asteroids that are classified 
as the nearest earth object."
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "\n",
+        "Let's first inspect the columns of our dataset and their types"
+      ],
+      "metadata": {
+        "id": "cvAu5T0ENjuQ"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 3,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";
+        },
+        "id": "LwW77ixE-pjR",
+        "outputId": "f5386993-14cb-42ee-94ca-8ea006860d3e"
+      },
+      "outputs": [
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "spk_id                       int64\n",
+              "full_name                   object\n",
+              "near_earth_object           object\n",
+              "absolute_magnitude         float64\n",
+              "diameter                   float64\n",
+              "albedo                     float64\n",
+              "diameter_sigma             float64\n",
+              "eccentricity               float64\n",
+              "inclination                float64\n",
+              "moid_ld                    float64\n",
+              "object_class                object\n",
+              "semi_major_axis_au_unit    float64\n",
+              "hazardous_flag              object\n",
+              "dtype: object"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 3
+        }
+      ],
+      "source": [
+        "beam_df.dtypes"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "When using Interactive Beam, we can use `ib.collect()` to bring a 
Beam DataFrame into local memory as a Pandas DataFrame."
+      ],
+      "metadata": {
+        "id": "1Wa6fpbyQige"
+      }
+    },
+    {
+      "cell_type": "code",
+      "execution_count": 8,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 378
+        },
+        "id": "DPxkAmkpq4Xv",
+        "outputId": "e49b4243-107f-4256-9e09-49cc20bf7f56"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_f6af66571c53daa0d9052370b7d1d8b7\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_f6af66571c53daa0d9052370b7d1d8b7\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_f6af66571c53daa0d9052370b7d1d8b7\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "             spk_id  absolute_magnitude     diameter       
albedo  \\\n",
+              "count  9.999000e+03         9999.000000  8688.000000  
8672.000000   \n",
+              "mean   2.005000e+06           12.675380    19.245446     
0.197723   \n",
+              "std    2.886607e+03            1.639609    30.190191     
0.138819   \n",
+              "min    2.000001e+06            3.000000     0.300000     
0.008000   \n",
+              "25%    2.002500e+06           11.900000     5.614000     
0.074000   \n",
+              "50%    2.005000e+06           12.900000     9.814000     
0.187000   \n",
+              "75%    2.007500e+06           13.700000    19.156750     
0.283000   \n",
+              "max    2.009999e+06           20.700000   939.400000     
1.000000   \n",
+              "\n",
+              "       diameter_sigma  eccentricity  inclination      moid_ld  
\\\n",
+              "count     8591.000000   9999.000000  9999.000000  9999.000000   
\n",
+              "mean         0.454072      0.148716     7.890742   509.805237   
\n",
+              "std          1.093676      0.083803     6.336244   205.046582   
\n",
+              "min          0.006000      0.001003     0.042716     0.131028   
\n",
+              "25%          0.120000      0.093780     3.220137   377.829197   
\n",
+              "50%          0.201000      0.140335     6.018836   470.650523   
\n",
+              "75%          0.375000      0.187092    10.918176   636.010802   
\n",
+              "max         39.297000      0.889831    68.018875  4241.524913   
\n",
+              "\n",
+              "       semi_major_axis_au_unit  \n",
+              "count              9999.000000  \n",
+              "mean                  2.689836  \n",
+              "std                   0.607190  \n",
+              "min                   0.832048  \n",
+              "25%                   2.340816  \n",
+              "50%                   2.614468  \n",
+              "75%                   3.005449  \n",
+              "max                  24.667968  "
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-2c0349a9-81c4-473a-9fa1-44c423244858\">\n",
+              "    <div class=\"colab-df-container\">\n",
+              "      <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>spk_id</th>\n",
+              "      <th>absolute_magnitude</th>\n",
+              "      <th>diameter</th>\n",
+              "      <th>albedo</th>\n",
+              "      <th>diameter_sigma</th>\n",
+              "      <th>eccentricity</th>\n",
+              "      <th>inclination</th>\n",
+              "      <th>moid_ld</th>\n",
+              "      <th>semi_major_axis_au_unit</th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>count</th>\n",
+              "      <td>9.999000e+03</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>8688.000000</td>\n",
+              "      <td>8672.000000</td>\n",
+              "      <td>8591.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>mean</th>\n",
+              "      <td>2.005000e+06</td>\n",
+              "      <td>12.675380</td>\n",
+              "      <td>19.245446</td>\n",
+              "      <td>0.197723</td>\n",
+              "      <td>0.454072</td>\n",
+              "      <td>0.148716</td>\n",
+              "      <td>7.890742</td>\n",
+              "      <td>509.805237</td>\n",
+              "      <td>2.689836</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>std</th>\n",
+              "      <td>2.886607e+03</td>\n",
+              "      <td>1.639609</td>\n",
+              "      <td>30.190191</td>\n",
+              "      <td>0.138819</td>\n",
+              "      <td>1.093676</td>\n",
+              "      <td>0.083803</td>\n",
+              "      <td>6.336244</td>\n",
+              "      <td>205.046582</td>\n",
+              "      <td>0.607190</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>min</th>\n",
+              "      <td>2.000001e+06</td>\n",
+              "      <td>3.000000</td>\n",
+              "      <td>0.300000</td>\n",
+              "      <td>0.008000</td>\n",
+              "      <td>0.006000</td>\n",
+              "      <td>0.001003</td>\n",
+              "      <td>0.042716</td>\n",
+              "      <td>0.131028</td>\n",
+              "      <td>0.832048</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>25%</th>\n",
+              "      <td>2.002500e+06</td>\n",
+              "      <td>11.900000</td>\n",
+              "      <td>5.614000</td>\n",
+              "      <td>0.074000</td>\n",
+              "      <td>0.120000</td>\n",
+              "      <td>0.093780</td>\n",
+              "      <td>3.220137</td>\n",
+              "      <td>377.829197</td>\n",
+              "      <td>2.340816</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>50%</th>\n",
+              "      <td>2.005000e+06</td>\n",
+              "      <td>12.900000</td>\n",
+              "      <td>9.814000</td>\n",
+              "      <td>0.187000</td>\n",
+              "      <td>0.201000</td>\n",
+              "      <td>0.140335</td>\n",
+              "      <td>6.018836</td>\n",
+              "      <td>470.650523</td>\n",
+              "      <td>2.614468</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>75%</th>\n",
+              "      <td>2.007500e+06</td>\n",
+              "      <td>13.700000</td>\n",
+              "      <td>19.156750</td>\n",
+              "      <td>0.283000</td>\n",
+              "      <td>0.375000</td>\n",
+              "      <td>0.187092</td>\n",
+              "      <td>10.918176</td>\n",
+              "      <td>636.010802</td>\n",
+              "      <td>3.005449</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>max</th>\n",
+              "      <td>2.009999e+06</td>\n",
+              "      <td>20.700000</td>\n",
+              "      <td>939.400000</td>\n",
+              "      <td>1.000000</td>\n",
+              "      <td>39.297000</td>\n",
+              "      <td>0.889831</td>\n",
+              "      <td>68.018875</td>\n",
+              "      <td>4241.524913</td>\n",
+              "      <td>24.667968</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "</div>\n",
+              "      <button class=\"colab-df-convert\" 
onclick=\"convertToInteractive('df-2c0349a9-81c4-473a-9fa1-44c423244858')\"\n",
+              "              title=\"Convert this dataframe to an interactive 
table.\"\n",
+              "              style=\"display:none;\">\n",
+              "        \n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\"; 
height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "       width=\"24px\">\n",
+              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
+              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 
2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 
7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 
7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 
1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 
1.47 1.35L5.41 20z\"/>\n",
+              "  </svg>\n",
+              "      </button>\n",
+              "      \n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      flex-wrap:wrap;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 
3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "      <script>\n",
+              "        const buttonEl =\n",
+              "          
document.querySelector('#df-2c0349a9-81c4-473a-9fa1-44c423244858 
button.colab-df-convert');\n",
+              "        buttonEl.style.display =\n",
+              "          google.colab.kernel.accessAllowed ? 'block' : 
'none';\n",
+              "\n",
+              "        async function convertToInteractive(key) {\n",
+              "          const element = 
document.querySelector('#df-2c0349a9-81c4-473a-9fa1-44c423244858');\n",
+              "          const dataTable =\n",
+              "            await 
google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                     [key], 
{});\n",
+              "          if (!dataTable) return;\n",
+              "\n",
+              "          const docLinkHtml = 'Like what you see? Visit the ' 
+\n",
+              "            '<a target=\"_blank\" 
href=https://colab.research.google.com/notebooks/data_table.ipynb>data table 
notebook</a>'\n",
+              "            + ' to learn more about interactive tables.';\n",
+              "          element.innerHTML = '';\n",
+              "          dataTable['output_type'] = 'display_data';\n",
+              "          await google.colab.output.renderOutput(dataTable, 
element);\n",
+              "          const docLink = document.createElement('div');\n",
+              "          docLink.innerHTML = docLinkHtml;\n",
+              "          element.appendChild(docLink);\n",
+              "        }\n",
+              "      </script>\n",
+              "    </div>\n",
+              "  </div>\n",
+              "  "
+            ]
+          },
+          "metadata": {},
+          "execution_count": 8
+        }
+      ],
+      "source": [
+        "ib.collect(beam_df)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "We can see that our datasets consists of both:\n",
+        "\n",
+        "* **Numerical columns:** These columns need to be transformed through 
[normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization)
 before they can be used for training a machine learning model.\n",
+        "\n",
+        "* **Categorical columns:** We need to transform those columns with 
[one-hot 
encoding](https://developers.google.com/machine-learning/data-prep/transform/transform-categorical)
 to use them during training. \n"
+      ],
+      "metadata": {
+        "id": "8jV9odKhNyF2"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "We can also explore use the standard pandas command 
`DataFrame.describe()` to generate descriptive statistics for the numerical 
columns like percentile, mean, std etc. "
+      ],
+      "metadata": {
+        "id": "MGAErO0lAYws"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "with dataframe.allow_non_parallel_operations():\n",
+        "  beam_df_description = ib.collect(beam_df.describe())\n",
+        "\n",
+        "beam_df_description"
+      ],
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 378
+        },
+        "id": "Befv697VBGM7",
+        "outputId": "d02b7a41-a8a3-4837-cf63-e1fa9e7b011e"
+      },
+      "execution_count": 9,
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_a5b31481d153dff1b7ecdd673624949b\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_a5b31481d153dff1b7ecdd673624949b\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_a5b31481d153dff1b7ecdd673624949b\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "             spk_id  absolute_magnitude     diameter       
albedo  \\\n",
+              "count  9.999000e+03         9999.000000  8688.000000  
8672.000000   \n",
+              "mean   2.005000e+06           12.675380    19.245446     
0.197723   \n",
+              "std    2.886607e+03            1.639609    30.190191     
0.138819   \n",
+              "min    2.000001e+06            3.000000     0.300000     
0.008000   \n",
+              "25%    2.002500e+06           11.900000     5.614000     
0.074000   \n",
+              "50%    2.005000e+06           12.900000     9.814000     
0.187000   \n",
+              "75%    2.007500e+06           13.700000    19.156750     
0.283000   \n",
+              "max    2.009999e+06           20.700000   939.400000     
1.000000   \n",
+              "\n",
+              "       diameter_sigma  eccentricity  inclination      moid_ld  
\\\n",
+              "count     8591.000000   9999.000000  9999.000000  9999.000000   
\n",
+              "mean         0.454072      0.148716     7.890742   509.805237   
\n",
+              "std          1.093676      0.083803     6.336244   205.046582   
\n",
+              "min          0.006000      0.001003     0.042716     0.131028   
\n",
+              "25%          0.120000      0.093780     3.220137   377.829197   
\n",
+              "50%          0.201000      0.140335     6.018836   470.650523   
\n",
+              "75%          0.375000      0.187092    10.918176   636.010802   
\n",
+              "max         39.297000      0.889831    68.018875  4241.524913   
\n",
+              "\n",
+              "       semi_major_axis_au_unit  \n",
+              "count              9999.000000  \n",
+              "mean                  2.689836  \n",
+              "std                   0.607190  \n",
+              "min                   0.832048  \n",
+              "25%                   2.340816  \n",
+              "50%                   2.614468  \n",
+              "75%                   3.005449  \n",
+              "max                  24.667968  "
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-d16cf806-a3e2-46d9-973d-74448570aaa2\">\n",
+              "    <div class=\"colab-df-container\">\n",
+              "      <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>spk_id</th>\n",
+              "      <th>absolute_magnitude</th>\n",
+              "      <th>diameter</th>\n",
+              "      <th>albedo</th>\n",
+              "      <th>diameter_sigma</th>\n",
+              "      <th>eccentricity</th>\n",
+              "      <th>inclination</th>\n",
+              "      <th>moid_ld</th>\n",
+              "      <th>semi_major_axis_au_unit</th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>count</th>\n",
+              "      <td>9.999000e+03</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>8688.000000</td>\n",
+              "      <td>8672.000000</td>\n",
+              "      <td>8591.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "      <td>9999.000000</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>mean</th>\n",
+              "      <td>2.005000e+06</td>\n",
+              "      <td>12.675380</td>\n",
+              "      <td>19.245446</td>\n",
+              "      <td>0.197723</td>\n",
+              "      <td>0.454072</td>\n",
+              "      <td>0.148716</td>\n",
+              "      <td>7.890742</td>\n",
+              "      <td>509.805237</td>\n",
+              "      <td>2.689836</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>std</th>\n",
+              "      <td>2.886607e+03</td>\n",
+              "      <td>1.639609</td>\n",
+              "      <td>30.190191</td>\n",
+              "      <td>0.138819</td>\n",
+              "      <td>1.093676</td>\n",
+              "      <td>0.083803</td>\n",
+              "      <td>6.336244</td>\n",
+              "      <td>205.046582</td>\n",
+              "      <td>0.607190</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>min</th>\n",
+              "      <td>2.000001e+06</td>\n",
+              "      <td>3.000000</td>\n",
+              "      <td>0.300000</td>\n",
+              "      <td>0.008000</td>\n",
+              "      <td>0.006000</td>\n",
+              "      <td>0.001003</td>\n",
+              "      <td>0.042716</td>\n",
+              "      <td>0.131028</td>\n",
+              "      <td>0.832048</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>25%</th>\n",
+              "      <td>2.002500e+06</td>\n",
+              "      <td>11.900000</td>\n",
+              "      <td>5.614000</td>\n",
+              "      <td>0.074000</td>\n",
+              "      <td>0.120000</td>\n",
+              "      <td>0.093780</td>\n",
+              "      <td>3.220137</td>\n",
+              "      <td>377.829197</td>\n",
+              "      <td>2.340816</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>50%</th>\n",
+              "      <td>2.005000e+06</td>\n",
+              "      <td>12.900000</td>\n",
+              "      <td>9.814000</td>\n",
+              "      <td>0.187000</td>\n",
+              "      <td>0.201000</td>\n",
+              "      <td>0.140335</td>\n",
+              "      <td>6.018836</td>\n",
+              "      <td>470.650523</td>\n",
+              "      <td>2.614468</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>75%</th>\n",
+              "      <td>2.007500e+06</td>\n",
+              "      <td>13.700000</td>\n",
+              "      <td>19.156750</td>\n",
+              "      <td>0.283000</td>\n",
+              "      <td>0.375000</td>\n",
+              "      <td>0.187092</td>\n",
+              "      <td>10.918176</td>\n",
+              "      <td>636.010802</td>\n",
+              "      <td>3.005449</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>max</th>\n",
+              "      <td>2.009999e+06</td>\n",
+              "      <td>20.700000</td>\n",
+              "      <td>939.400000</td>\n",
+              "      <td>1.000000</td>\n",
+              "      <td>39.297000</td>\n",
+              "      <td>0.889831</td>\n",
+              "      <td>68.018875</td>\n",
+              "      <td>4241.524913</td>\n",
+              "      <td>24.667968</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "</div>\n",
+              "      <button class=\"colab-df-convert\" 
onclick=\"convertToInteractive('df-d16cf806-a3e2-46d9-973d-74448570aaa2')\"\n",
+              "              title=\"Convert this dataframe to an interactive 
table.\"\n",
+              "              style=\"display:none;\">\n",
+              "        \n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\"; 
height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "       width=\"24px\">\n",
+              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
+              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 
2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 
7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 
7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 
1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 
1.47 1.35L5.41 20z\"/>\n",
+              "  </svg>\n",
+              "      </button>\n",
+              "      \n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      flex-wrap:wrap;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 
3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "      <script>\n",
+              "        const buttonEl =\n",
+              "          
document.querySelector('#df-d16cf806-a3e2-46d9-973d-74448570aaa2 
button.colab-df-convert');\n",
+              "        buttonEl.style.display =\n",
+              "          google.colab.kernel.accessAllowed ? 'block' : 
'none';\n",
+              "\n",
+              "        async function convertToInteractive(key) {\n",
+              "          const element = 
document.querySelector('#df-d16cf806-a3e2-46d9-973d-74448570aaa2');\n",
+              "          const dataTable =\n",
+              "            await 
google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                     [key], 
{});\n",
+              "          if (!dataTable) return;\n",
+              "\n",
+              "          const docLinkHtml = 'Like what you see? Visit the ' 
+\n",
+              "            '<a target=\"_blank\" 
href=https://colab.research.google.com/notebooks/data_table.ipynb>data table 
notebook</a>'\n",
+              "            + ' to learn more about interactive tables.';\n",
+              "          element.innerHTML = '';\n",
+              "          dataTable['output_type'] = 'display_data';\n",
+              "          await google.colab.output.renderOutput(dataTable, 
element);\n",
+              "          const docLink = document.createElement('div');\n",
+              "          docLink.innerHTML = docLinkHtml;\n",
+              "          element.appendChild(docLink);\n",
+              "        }\n",
+              "      </script>\n",
+              "    </div>\n",
+              "  </div>\n",
+              "  "
+            ]
+          },
+          "metadata": {},
+          "execution_count": 9
+        }
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "D9uJtHLSSAMC"
+      },
+      "source": [
+        "Before executing any transformations, we need to check if all the 
columns need to be used for model training. Let's first have a look at the 
column description as provided by the [JPL 
website](https://ssd.jpl.nasa.gov/sbdb_query.cgi):\n",
+        "\n",
+        "* **spk_id:** Object primary SPK-ID\n",
+        "* **full_name:** Asteroid name\n",
+        "* **near_earth_object:** Near-earth object flag\n",
+        "* **absolute_magnitude:** the apparent magnitude an object would have 
if it were located at a distance of 10 parsecs.\n",
+        "* **diameter:** object diameter (from equivalent sphere) km Unit\n",
+        "* **albedo:** a measure of the diffuse reflection of solar radiation 
out of the total solar radiation and measured on a scale from 0 to 1.\n",
+        "* **diameter_sigma:** 1-sigma uncertainty in object diameter km 
Unit.\n",
+        "* **eccentricity:** value between 0 and 1 that referes to how flat or 
round the shape of the asteroid is  \n",
+        "* **inclination:** angle with respect to x-y ecliptic plane\n",
+        "* **moid_ld:** Earth Minimum Orbit Intersection Distance au Unit\n",
+        "* **object_class:** the classification of the asteroid. Checkout this 
[link](https://pdssbn.astro.umd.edu/data_other/objclass.shtml) for a more 
detailed description.\n",
+        "* **Semi-major axis au Unit:** the length of half of the long axis in 
AU unit\n",
+        "* **hazardous_flag:** Hazardous Asteroid Flag"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "DzYVKbwTp72d"
+      },
+      "source": [
+        "Columns **'spkid'** and **'full_name'** are unique for each row.  
These columns can be removed since they are not needed for model training."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "piRPwH2aqT06"
+      },
+      "outputs": [],
+      "source": [
+        "beam_df = beam_df.drop(['spk_id', 'full_name'], axis='columns', 
inplace=False)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "fRvNyahSuX_y"
+      },
+      "source": [
+        "Let's have a look at the number of missing values"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 353
+        },
+        "id": "A2PLchW8vXvt",
+        "outputId": "c08d7f23-3a48-4282-a252-66f73cc7fd86"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            
"/content/beam/sdks/python/apache_beam/dataframe/frame_base.py:145: 
RuntimeWarning: invalid value encountered in long_scalars\n",
+            "  lambda left, right: getattr(left, op)(right), name=op, 
args=[other])\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_02cba1067de8e024374a26297834d233\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_02cba1067de8e024374a26297834d233\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_02cba1067de8e024374a26297834d233\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "near_earth_object           0.000000\n",
+              "absolute_magnitude          0.000000\n",
+              "diameter                   13.111311\n",
+              "albedo                     13.271327\n",
+              "diameter_sigma             14.081408\n",
+              "eccentricity                0.000000\n",
+              "inclination                 0.000000\n",
+              "moid_ld                     0.000000\n",
+              "object_class                0.000000\n",
+              "semi_major_axis_au_unit     0.000000\n",
+              "hazardous_flag              0.000000\n",
+              "dtype: float64"
+            ]
+          },
+          "metadata": {},
+          "execution_count": 7
+        }
+      ],
+      "source": [
+        "ib.collect(beam_df.isnull().mean() * 100)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "00MRdFGLwQiD"
+      },
+      "source": [
+        "It can be observed that most of the columns do not have missing 
values. However, columns **'diameter'**, **'albedo'** and **'diameter_sigma'** 
have many missing values. Since these values cannot be measured or derived, we 
can remove them since they will not be required for training the machine 
learning model."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "tHYeCHREwvyB",
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 538
+        },
+        "outputId": "5b1b2767-6ae9-4920-f96e-fd1f18e697bb"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_0a93a40e87f23e4a235dfd56cd10188b\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_0a93a40e87f23e4a235dfd56cd10188b\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_0a93a40e87f23e4a235dfd56cd10188b\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "     near_earth_object  absolute_magnitude  eccentricity  
inclination  \\\n",
+              "0                    N                3.40      0.076009    
10.594067   \n",
+              "1                    N                4.20      0.229972    
34.832932   \n",
+              "2                    N                5.33      0.256936    
12.991043   \n",
+              "3                    N                3.00      0.088721     
7.141771   \n",
+              "4                    N                6.90      0.190913     
5.367427   \n",
+              "...                ...                 ...           ...        
  ...   \n",
+              "9994                 N               15.10      0.160610     
2.311731   \n",
+              "9995                 N               13.60      0.235174     
7.657713   \n",
+              "9996                 N               14.30      0.113059     
2.459643   \n",
+              "9997                 N               15.10      0.093852     
3.912263   \n",
+              "9998                 N               13.00      0.071351     
3.198839   \n",
+              "\n",
+              "         moid_ld object_class  semi_major_axis_au_unit 
hazardous_flag  \n",
+              "0     620.640533          MBA                 2.769165          
    N  \n",
+              "1     480.348639          MBA                 2.773841          
    N  \n",
+              "2     402.514639          MBA                 2.668285          
    N  \n",
+              "3     443.451432          MBA                 2.361418          
    N  \n",
+              "4     426.433027          MBA                 2.574037          
    N  \n",
+              "...          ...          ...                      ...          
  ...  \n",
+              "9994  388.723233          MBA                 2.390249          
    N  \n",
+              "9995  444.194746          MBA                 2.796605          
    N  \n",
+              "9996  495.460110          MBA                 2.545674          
    N  \n",
+              "9997  373.848377          MBA                 2.160961          
    N  \n",
+              "9998  632.144398          MBA                 2.839917          
    N  \n",
+              "\n",
+              "[9999 rows x 8 columns]"
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-f1eb18dc-39ee-4c7c-9c07-b3f2e37fd398\">\n",
+              "    <div class=\"colab-df-container\">\n",
+              "      <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>near_earth_object</th>\n",
+              "      <th>absolute_magnitude</th>\n",
+              "      <th>eccentricity</th>\n",
+              "      <th>inclination</th>\n",
+              "      <th>moid_ld</th>\n",
+              "      <th>object_class</th>\n",
+              "      <th>semi_major_axis_au_unit</th>\n",
+              "      <th>hazardous_flag</th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>0</th>\n",
+              "      <td>N</td>\n",
+              "      <td>3.40</td>\n",
+              "      <td>0.076009</td>\n",
+              "      <td>10.594067</td>\n",
+              "      <td>620.640533</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.769165</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>1</th>\n",
+              "      <td>N</td>\n",
+              "      <td>4.20</td>\n",
+              "      <td>0.229972</td>\n",
+              "      <td>34.832932</td>\n",
+              "      <td>480.348639</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.773841</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>2</th>\n",
+              "      <td>N</td>\n",
+              "      <td>5.33</td>\n",
+              "      <td>0.256936</td>\n",
+              "      <td>12.991043</td>\n",
+              "      <td>402.514639</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.668285</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>3</th>\n",
+              "      <td>N</td>\n",
+              "      <td>3.00</td>\n",
+              "      <td>0.088721</td>\n",
+              "      <td>7.141771</td>\n",
+              "      <td>443.451432</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.361418</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>4</th>\n",
+              "      <td>N</td>\n",
+              "      <td>6.90</td>\n",
+              "      <td>0.190913</td>\n",
+              "      <td>5.367427</td>\n",
+              "      <td>426.433027</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.574037</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>...</th>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9994</th>\n",
+              "      <td>N</td>\n",
+              "      <td>15.10</td>\n",
+              "      <td>0.160610</td>\n",
+              "      <td>2.311731</td>\n",
+              "      <td>388.723233</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.390249</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9995</th>\n",
+              "      <td>N</td>\n",
+              "      <td>13.60</td>\n",
+              "      <td>0.235174</td>\n",
+              "      <td>7.657713</td>\n",
+              "      <td>444.194746</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.796605</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9996</th>\n",
+              "      <td>N</td>\n",
+              "      <td>14.30</td>\n",
+              "      <td>0.113059</td>\n",
+              "      <td>2.459643</td>\n",
+              "      <td>495.460110</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.545674</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9997</th>\n",
+              "      <td>N</td>\n",
+              "      <td>15.10</td>\n",
+              "      <td>0.093852</td>\n",
+              "      <td>3.912263</td>\n",
+              "      <td>373.848377</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.160961</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9998</th>\n",
+              "      <td>N</td>\n",
+              "      <td>13.00</td>\n",
+              "      <td>0.071351</td>\n",
+              "      <td>3.198839</td>\n",
+              "      <td>632.144398</td>\n",
+              "      <td>MBA</td>\n",
+              "      <td>2.839917</td>\n",
+              "      <td>N</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "<p>9999 rows × 8 columns</p>\n",
+              "</div>\n",
+              "      <button class=\"colab-df-convert\" 
onclick=\"convertToInteractive('df-f1eb18dc-39ee-4c7c-9c07-b3f2e37fd398')\"\n",
+              "              title=\"Convert this dataframe to an interactive 
table.\"\n",
+              "              style=\"display:none;\">\n",
+              "        \n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\"; 
height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "       width=\"24px\">\n",
+              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
+              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 
2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 
7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 
7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 
1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 
1.47 1.35L5.41 20z\"/>\n",
+              "  </svg>\n",
+              "      </button>\n",
+              "      \n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      flex-wrap:wrap;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 
3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "      <script>\n",
+              "        const buttonEl =\n",
+              "          
document.querySelector('#df-f1eb18dc-39ee-4c7c-9c07-b3f2e37fd398 
button.colab-df-convert');\n",
+              "        buttonEl.style.display =\n",
+              "          google.colab.kernel.accessAllowed ? 'block' : 
'none';\n",
+              "\n",
+              "        async function convertToInteractive(key) {\n",
+              "          const element = 
document.querySelector('#df-f1eb18dc-39ee-4c7c-9c07-b3f2e37fd398');\n",
+              "          const dataTable =\n",
+              "            await 
google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                     [key], 
{});\n",
+              "          if (!dataTable) return;\n",
+              "\n",
+              "          const docLinkHtml = 'Like what you see? Visit the ' 
+\n",
+              "            '<a target=\"_blank\" 
href=https://colab.research.google.com/notebooks/data_table.ipynb>data table 
notebook</a>'\n",
+              "            + ' to learn more about interactive tables.';\n",
+              "          element.innerHTML = '';\n",
+              "          dataTable['output_type'] = 'display_data';\n",
+              "          await google.colab.output.renderOutput(dataTable, 
element);\n",
+              "          const docLink = document.createElement('div');\n",
+              "          docLink.innerHTML = docLinkHtml;\n",
+              "          element.appendChild(docLink);\n",
+              "        }\n",
+              "      </script>\n",
+              "    </div>\n",
+              "  </div>\n",
+              "  "
+            ]
+          },
+          "metadata": {},
+          "execution_count": 8
+        }
+      ],
+      "source": [
+        "beam_df = beam_df.drop(['diameter', 'albedo', 'diameter_sigma'], 
axis='columns', inplace=False)\n",
+        "ib.collect(beam_df)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "a3PojL3WBqgE"
+      },
+      "source": [
+        "Next, we need to normalize the numerical columns before using them to 
train a model. A common method of standarization is to subtract the mean and 
divide by standard deviation (a.k.a 
[z-score](https://developers.google.com/machine-learning/data-prep/transform/normalization#z-score)).
 This improves the performance and trainign stability of the model during 
training and inference.\n"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "sZ2_gB8wENF1"
+      },
+      "source": [
+        "Let's first get both the the numerical columns and categorical 
columns"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "vsWY8xW5d_Wn"
+      },
+      "outputs": [],
+      "source": [
+        "numerical_cols = 
beam_df.select_dtypes(include=np.number).columns.tolist()\n",
+        "categorical_cols = list(set(beam_df.columns) - set(numerical_cols))"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 356
+        },
+        "id": "Gjc0UlDD-xUn",
+        "outputId": "cadc4402-7edc-43f6-bc6a-bc4f1fd3314a"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            
"/content/beam/sdks/python/apache_beam/dataframe/frame_base.py:145: 
RuntimeWarning: invalid value encountered in double_scalars\n",
+            "  lambda left, right: getattr(left, op)(right), name=op, 
args=[other])\n"
+          ]
+        },
+        {
+          "output_type": "error",
+          "ename": "NotImplementedError",
+          "evalue": "ignored",
+          "traceback": [
+            
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[0;31mNotImplementedError\u001b[0m                       
Traceback (most recent call last)",
+            "\u001b[0;32m/tmp/ipykernel_325/987840581.py\u001b[0m in 
\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      1\u001b[0m 
\u001b[0;31m# Normalizing method_1: Can work but relies on 
ticket\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---->
 2\u001b[0;31m 
\u001b[0mbeam_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mnumerical_cols\u001b[0m\u001b[0;34m]\u001b[0m
 \u001b[0;34m=\u001b[0m 
\u001b[0mbeam_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m
 \u001b[0mnumerical_cols\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m-\u001b[0m 
\u001b[0mbeam_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mloc\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0mnumerical_cols\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmean\u001b[0m\u001b[0;34m(\u001
 
b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/dataframe/frame_base.py\u001b[0m
 in \u001b[0;36mwrapper\u001b[0;34m(*args, **kwargs)\u001b[0m\n\u001b[1;32m    
426\u001b[0m   \u001b[0;32mdef\u001b[0m 
\u001b[0mwrapper\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
    427\u001b[0m     raise NotImplementedError(\n\u001b[0;32m--> 
428\u001b[0;31m         \u001b[0;34mf\"{op!r} is not implemented yet. 
\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
    429\u001b[0m         \u001b[0;34mf\"If support for {op!r} is important to 
you, please let the Beam 
\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    
430\u001b[0m         \u001b[0;34m\"community know by writing to 
[email protected] \"\u001b[0m\u001b[0;34m\u
 001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            "\u001b[0;31mNotImplementedError\u001b[0m: 'loc.setitem' is not 
implemented yet. If support for 'loc.setitem' is important to you, please let 
the Beam community know by writing to [email protected] (see 
https://beam.apache.org/community/contact-us/) or commenting on 
https://github.com/apache/beam/issues/20318";
+          ]
+        }
+      ],
+      "source": [
+        "# Normalizing method_1: Can work but relies on ticket #22267\n",
+        "beam_df.loc[:,numerical_cols] = (beam_df.loc[:, numerical_cols] - 
beam_df.loc[:, numerical_cols].mean())/beam_numerical_cols.std()"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "v03ABuXJKEmv"
+      },
+      "source": [
+        "Normalizing the data"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 538
+        },
+        "id": "PD_DTxPCP4hs",
+        "outputId": "be40308f-d27c-46fa-e365-43a635addf6b"
+      },
+      "outputs": [
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_d18c3f74760fd465e55dc784f6b3cf87\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_d18c3f74760fd465e55dc784f6b3cf87\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_d18c3f74760fd465e55dc784f6b3cf87\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "execute_result",
+          "data": {
+            "text/plain": [
+              "      absolute_magnitude  eccentricity  inclination   moid_ld  
\\\n",
+              "306            -1.570727     -0.062543    -0.278518  0.373194   
\n",
+              "310            -1.631718     -1.724526    -0.736389  1.087833   
\n",
+              "546            -1.753698      1.028793     1.415303 -0.339489   
\n",
+              "635            -1.875678      0.244869     0.005905  0.214107   
\n",
+              "701            -3.278451     -1.570523     2.006145  1.542754   
\n",
+              "...                  ...           ...          ...       ...   
\n",
+              "9697            0.807888     -1.151809    -0.082944 -0.129556   
\n",
+              "9813            1.722740      0.844551    -0.583247 -1.006447   
\n",
+              "9868            0.807888     -0.207399    -0.784665 -0.462136   
\n",
+              "9903            0.868878      0.460086     0.092258 -0.107597   
\n",
+              "9956            0.746898     -0.234132    -0.161116 -0.601379   
\n",
+              "\n",
+              "      semi_major_axis_au_unit  \n",
+              "306                  0.357201  \n",
+              "310                  0.344233  \n",
+              "546                  0.139080  \n",
+              "635                  0.367559  \n",
+              "701                  0.829337  \n",
+              "...                       ...  \n",
+              "9697                -0.533538  \n",
+              "9813                -0.677961  \n",
+              "9868                -0.539794  \n",
+              "9903                 0.071794  \n",
+              "9956                -0.664887  \n",
+              "\n",
+              "[9999 rows x 5 columns]"
+            ],
+            "text/html": [
+              "\n",
+              "  <div id=\"df-5bcfe283-1b7d-4af1-af32-05eea5ddacbc\">\n",
+              "    <div class=\"colab-df-container\">\n",
+              "      <div>\n",
+              "<style scoped>\n",
+              "    .dataframe tbody tr th:only-of-type {\n",
+              "        vertical-align: middle;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe tbody tr th {\n",
+              "        vertical-align: top;\n",
+              "    }\n",
+              "\n",
+              "    .dataframe thead th {\n",
+              "        text-align: right;\n",
+              "    }\n",
+              "</style>\n",
+              "<table border=\"1\" class=\"dataframe\">\n",
+              "  <thead>\n",
+              "    <tr style=\"text-align: right;\">\n",
+              "      <th></th>\n",
+              "      <th>absolute_magnitude</th>\n",
+              "      <th>eccentricity</th>\n",
+              "      <th>inclination</th>\n",
+              "      <th>moid_ld</th>\n",
+              "      <th>semi_major_axis_au_unit</th>\n",
+              "    </tr>\n",
+              "  </thead>\n",
+              "  <tbody>\n",
+              "    <tr>\n",
+              "      <th>306</th>\n",
+              "      <td>-1.570727</td>\n",
+              "      <td>-0.062543</td>\n",
+              "      <td>-0.278518</td>\n",
+              "      <td>0.373194</td>\n",
+              "      <td>0.357201</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>310</th>\n",
+              "      <td>-1.631718</td>\n",
+              "      <td>-1.724526</td>\n",
+              "      <td>-0.736389</td>\n",
+              "      <td>1.087833</td>\n",
+              "      <td>0.344233</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>546</th>\n",
+              "      <td>-1.753698</td>\n",
+              "      <td>1.028793</td>\n",
+              "      <td>1.415303</td>\n",
+              "      <td>-0.339489</td>\n",
+              "      <td>0.139080</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>635</th>\n",
+              "      <td>-1.875678</td>\n",
+              "      <td>0.244869</td>\n",
+              "      <td>0.005905</td>\n",
+              "      <td>0.214107</td>\n",
+              "      <td>0.367559</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>701</th>\n",
+              "      <td>-3.278451</td>\n",
+              "      <td>-1.570523</td>\n",
+              "      <td>2.006145</td>\n",
+              "      <td>1.542754</td>\n",
+              "      <td>0.829337</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>...</th>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "      <td>...</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9697</th>\n",
+              "      <td>0.807888</td>\n",
+              "      <td>-1.151809</td>\n",
+              "      <td>-0.082944</td>\n",
+              "      <td>-0.129556</td>\n",
+              "      <td>-0.533538</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9813</th>\n",
+              "      <td>1.722740</td>\n",
+              "      <td>0.844551</td>\n",
+              "      <td>-0.583247</td>\n",
+              "      <td>-1.006447</td>\n",
+              "      <td>-0.677961</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9868</th>\n",
+              "      <td>0.807888</td>\n",
+              "      <td>-0.207399</td>\n",
+              "      <td>-0.784665</td>\n",
+              "      <td>-0.462136</td>\n",
+              "      <td>-0.539794</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9903</th>\n",
+              "      <td>0.868878</td>\n",
+              "      <td>0.460086</td>\n",
+              "      <td>0.092258</td>\n",
+              "      <td>-0.107597</td>\n",
+              "      <td>0.071794</td>\n",
+              "    </tr>\n",
+              "    <tr>\n",
+              "      <th>9956</th>\n",
+              "      <td>0.746898</td>\n",
+              "      <td>-0.234132</td>\n",
+              "      <td>-0.161116</td>\n",
+              "      <td>-0.601379</td>\n",
+              "      <td>-0.664887</td>\n",
+              "    </tr>\n",
+              "  </tbody>\n",
+              "</table>\n",
+              "<p>9999 rows × 5 columns</p>\n",
+              "</div>\n",
+              "      <button class=\"colab-df-convert\" 
onclick=\"convertToInteractive('df-5bcfe283-1b7d-4af1-af32-05eea5ddacbc')\"\n",
+              "              title=\"Convert this dataframe to an interactive 
table.\"\n",
+              "              style=\"display:none;\">\n",
+              "        \n",
+              "  <svg xmlns=\"http://www.w3.org/2000/svg\"; 
height=\"24px\"viewBox=\"0 0 24 24\"\n",
+              "       width=\"24px\">\n",
+              "    <path d=\"M0 0h24v24H0V0z\" fill=\"none\"/>\n",
+              "    <path d=\"M18.56 5.44l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94zm-11 1L8.5 8.5l.94-2.06 
2.06-.94-2.06-.94L8.5 2.5l-.94 2.06-2.06.94zm10 10l.94 2.06.94-2.06 
2.06-.94-2.06-.94-.94-2.06-.94 2.06-2.06.94z\"/><path d=\"M17.41 
7.96l-1.37-1.37c-.4-.4-.92-.59-1.43-.59-.52 0-1.04.2-1.43.59L10.3 9.45l-7.72 
7.72c-.78.78-.78 2.05 0 2.83L4 21.41c.39.39.9.59 1.41.59.51 0 1.02-.2 
1.41-.59l7.78-7.78 2.81-2.81c.8-.78.8-2.07 0-2.86zM5.41 20L4 18.59l7.72-7.72 
1.47 1.35L5.41 20z\"/>\n",
+              "  </svg>\n",
+              "      </button>\n",
+              "      \n",
+              "  <style>\n",
+              "    .colab-df-container {\n",
+              "      display:flex;\n",
+              "      flex-wrap:wrap;\n",
+              "      gap: 12px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert {\n",
+              "      background-color: #E8F0FE;\n",
+              "      border: none;\n",
+              "      border-radius: 50%;\n",
+              "      cursor: pointer;\n",
+              "      display: none;\n",
+              "      fill: #1967D2;\n",
+              "      height: 32px;\n",
+              "      padding: 0 0 0 0;\n",
+              "      width: 32px;\n",
+              "    }\n",
+              "\n",
+              "    .colab-df-convert:hover {\n",
+              "      background-color: #E2EBFA;\n",
+              "      box-shadow: 0px 1px 2px rgba(60, 64, 67, 0.3), 0px 1px 
3px 1px rgba(60, 64, 67, 0.15);\n",
+              "      fill: #174EA6;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert {\n",
+              "      background-color: #3B4455;\n",
+              "      fill: #D2E3FC;\n",
+              "    }\n",
+              "\n",
+              "    [theme=dark] .colab-df-convert:hover {\n",
+              "      background-color: #434B5C;\n",
+              "      box-shadow: 0px 1px 3px 1px rgba(0, 0, 0, 0.15);\n",
+              "      filter: drop-shadow(0px 1px 2px rgba(0, 0, 0, 0.3));\n",
+              "      fill: #FFFFFF;\n",
+              "    }\n",
+              "  </style>\n",
+              "\n",
+              "      <script>\n",
+              "        const buttonEl =\n",
+              "          
document.querySelector('#df-5bcfe283-1b7d-4af1-af32-05eea5ddacbc 
button.colab-df-convert');\n",
+              "        buttonEl.style.display =\n",
+              "          google.colab.kernel.accessAllowed ? 'block' : 
'none';\n",
+              "\n",
+              "        async function convertToInteractive(key) {\n",
+              "          const element = 
document.querySelector('#df-5bcfe283-1b7d-4af1-af32-05eea5ddacbc');\n",
+              "          const dataTable =\n",
+              "            await 
google.colab.kernel.invokeFunction('convertToInteractive',\n",
+              "                                                     [key], 
{});\n",
+              "          if (!dataTable) return;\n",
+              "\n",
+              "          const docLinkHtml = 'Like what you see? Visit the ' 
+\n",
+              "            '<a target=\"_blank\" 
href=https://colab.research.google.com/notebooks/data_table.ipynb>data table 
notebook</a>'\n",
+              "            + ' to learn more about interactive tables.';\n",
+              "          element.innerHTML = '';\n",
+              "          dataTable['output_type'] = 'display_data';\n",
+              "          await google.colab.output.renderOutput(dataTable, 
element);\n",
+              "          const docLink = document.createElement('div');\n",
+              "          docLink.innerHTML = docLinkHtml;\n",
+              "          element.appendChild(docLink);\n",
+              "        }\n",
+              "      </script>\n",
+              "    </div>\n",
+              "  </div>\n",
+              "  "
+            ]
+          },
+          "metadata": {},
+          "execution_count": 11
+        }
+      ],
+      "source": [
+        "# Get numerical columns\n",
+        "beam_numerical_cols = beam_df.filter(items=numerical_cols)\n",
+        "\n",
+        "# Standarize dataframes only with numerical columns\n",
+        "beam_numerical_cols = (beam_numerical_cols - 
beam_numerical_cols.mean())/beam_numerical_cols.std()\n",
+        "\n",
+        "ib.collect(beam_numerical_cols)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "qdNILsajFvex"
+      },
+      "source": [
+        "Next, we need to convert the categorical columns into one-hot 
encoding variables to use them during training. \n"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 321
+        },
+        "id": "Ngoxg0rSywVd",
+        "outputId": "d81bb29a-f8f8-4186-b186-5ff85667dbec"
+      },
+      "outputs": [
+        {
+          "output_type": "error",
+          "ename": "AttributeError",
+          "evalue": "ignored",
+          "traceback": [
+            
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[0;31mAttributeError\u001b[0m                            
Traceback (most recent call last)",
+            "\u001b[0;32m/tmp/ipykernel_325/1671644751.py\u001b[0m in 
\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      4\u001b[0m 
\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m 
\u001b[0mobject_class_col\u001b[0m\u001b[0;34m=\u001b[0m 
\u001b[0mbeam_df\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfilter\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mitems\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'object_class'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---->
 6\u001b[0;31m 
\u001b[0mobject_class_col\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_dummies\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/dataframe/frames.py\u001b[0m 
in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m   
2482\u001b[0m       \u001b[0;32mreturn\u001b[0m 
\u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
   2483\u001b[0m     
\u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m->
 2484\u001b[0;31m       \u001b[0;32mreturn\u001b[0m 
\u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
   2485\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2486\u001b[0m   
\u001b[0;32mdef\u001b[0m 
\u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[
 0m\u001b[0;34m,\u001b[0m 
\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            "\u001b[0;31mAttributeError\u001b[0m: 'DeferredDataFrame' object 
has no attribute 'get_dummies'"
+          ]
+        }
+      ],
+      "source": [
+        "object_class_col= beam_df.filter(items=['object_class'])\n",
+        "object_class_col.get_dummies()"
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 321
+        },
+        "id": "hz8s7z8caTq-",
+        "outputId": "5c543a6b-0ea1-41f8-afec-9691bbbd1f5b"
+      },
+      "outputs": [
+        {
+          "output_type": "error",
+          "ename": "AttributeError",
+          "evalue": "ignored",
+          "traceback": [
+            
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[0;31mAttributeError\u001b[0m                            
Traceback (most recent call last)",
+            "\u001b[0;32m/tmp/ipykernel_325/1927971370.py\u001b[0m in 
\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m      8\u001b[0m 
\u001b[0;31m# 
df['categories_concat'].str.get_dummies('-')\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
      9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 
10\u001b[0;31m 
\u001b[0mobject_class_col\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mstr\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_dummies\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/dataframe/frames.py\u001b[0m 
in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m   
2482\u001b[0m       \u001b[0;32mreturn\u001b[0m 
\u001b[0mself\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
   2483\u001b[0m     
\u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m->
 2484\u001b[0;31m       \u001b[0;32mreturn\u001b[0m 
\u001b[0mobject\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m__getattribute__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
   2485\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   2486\u001b[0m   
\u001b[0;32mdef\u001b[0m 
\u001b[0m__getitem__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[
 0m\u001b[0;34m,\u001b[0m 
\u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            "\u001b[0;31mAttributeError\u001b[0m: 'DeferredDataFrame' object 
has no attribute 'str'"
+          ]
+        }
+      ],
+      "source": [
+        "object_class_col.str.get_dummies()"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "rVdSIyCB0spw"
+      },
+      "source": [
+        "# Putting it all together\n",
+        "\n",
+        "Let's now try to summarize all the steps that we've executed above 
into a full pipeline implementation and visualize our pre-processed data.\n",
+        "\n",
+        "> ℹ️ Note that the only standard Beam method invoked here is the 
`pipeline` instance. The rest of the pre-processing commands are all based on 
native pandas methods that have been integrated with the Beam DataFrame API. "
+      ]
+    },
+    {
+      "cell_type": "code",
+      "execution_count": null,
+      "metadata": {
+        "id": "ndaSNond0v8Q",
+        "colab": {
+          "base_uri": "https://localhost:8080/";,
+          "height": 498
+        },
+        "outputId": "0155d359-45c9-4345-e1b6-b1881408f049"
+      },
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stderr",
+          "text": [
+            
"/content/beam/sdks/python/apache_beam/dataframe/frame_base.py:145: 
RuntimeWarning: invalid value encountered in double_scalars\n",
+            "  lambda left, right: getattr(left, op)(right), name=op, 
args=[other])\n"
+          ]
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "text/plain": [
+              "<IPython.core.display.HTML object>"
+            ],
+            "text/html": [
+              "\n",
+              "            <link rel=\"stylesheet\" 
href=\"https://stackpath.bootstrapcdn.com/bootstrap/4.4.1/css/bootstrap.min.css\";
 
integrity=\"sha384-Vkoo8x4CGsO3+Hhxv8T/Q5PaXtkKtu6ug5TOeNV6gBiFeWPGFN9MuhOf23Q9Ifjh\"
 crossorigin=\"anonymous\">\n",
+              "            <div 
id=\"progress_indicator_fc5349f6a626d7566f941a2f2a1fccfe\">\n",
+              "              <div class=\"spinner-border text-info\" 
role=\"status\"></div>\n",
+              "              <span class=\"text-info\">Processing... 
collect</span>\n",
+              "            </div>\n",
+              "            "
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "display_data",
+          "data": {
+            "application/javascript": [
+              "\n",
+              "        if (typeof window.interactive_beam_jquery == 
'undefined') {\n",
+              "          var jqueryScript = 
document.createElement('script');\n",
+              "          jqueryScript.src = 
'https://code.jquery.com/jquery-3.4.1.slim.min.js';\n",
+              "          jqueryScript.type = 'text/javascript';\n",
+              "          jqueryScript.onload = function() {\n",
+              "            var datatableScript = 
document.createElement('script');\n",
+              "            datatableScript.src = 
'https://cdn.datatables.net/1.10.20/js/jquery.dataTables.min.js';\n",
+              "            datatableScript.type = 'text/javascript';\n",
+              "            datatableScript.onload = function() {\n",
+              "              window.interactive_beam_jquery = 
jQuery.noConflict(true);\n",
+              "              
window.interactive_beam_jquery(document).ready(function($){\n",
+              "                \n",
+              "            
$(\"#progress_indicator_fc5349f6a626d7566f941a2f2a1fccfe\").remove();\n",
+              "              });\n",
+              "            }\n",
+              "            document.head.appendChild(datatableScript);\n",
+              "          };\n",
+              "          document.head.appendChild(jqueryScript);\n",
+              "        } else {\n",
+              "          
window.interactive_beam_jquery(document).ready(function($){\n",
+              "            \n",
+              "            
$(\"#progress_indicator_fc5349f6a626d7566f941a2f2a1fccfe\").remove();\n",
+              "          });\n",
+              "        }"
+            ]
+          },
+          "metadata": {}
+        },
+        {
+          "output_type": "error",
+          "ename": "ValueError",
+          "evalue": "ignored",
+          "traceback": [
+            
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
+            "\u001b[0;31mValueError\u001b[0m                                
Traceback (most recent call last)",
+            "\u001b[0;32m/tmp/ipykernel_325/1408061827.py\u001b[0m in 
\u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m     25\u001b[0m 
\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     26\u001b[0m 
\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 27\u001b[0;31m 
\u001b[0mib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcollect\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mpreprocessed_dataset\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/runners/interactive/utils.py\u001b[0m
 in \u001b[0;36mrun_within_progress_indicator\u001b[0;34m(*args, 
**kwargs)\u001b[0m\n\u001b[1;32m    275\u001b[0m   \u001b[0;32mdef\u001b[0m 
\u001b[0mrun_within_progress_indicator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
    276\u001b[0m     \u001b[0;32mwith\u001b[0m 
\u001b[0mProgressIndicator\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mf'Processing...
 {func.__name__}'\u001b[0m\u001b[0;34m,\u001b[0m 
\u001b[0;34m'Done.'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-->
 277\u001b[0;31m       \u001b[0;32mreturn\u001b[0m 
\u001b[0mfunc\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001
 b[0;34m,\u001b[0m 
\u001b[0;34m**\u001b[0m\u001b[0mkwargs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
    278\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    279\u001b[0m   
\u001b[0;32mreturn\u001b[0m 
\u001b[0mrun_within_progress_indicator\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/runners/interactive/interactive_beam.py\u001b[0m
 in \u001b[0;36mcollect\u001b[0;34m(pcoll, n, duration, 
include_window_info)\u001b[0m\n\u001b[1;32m    945\u001b[0m         
element_type=element_type)\n\u001b[1;32m    946\u001b[0m 
\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 947\u001b[0;31m   
\u001b[0mrecording\u001b[0m \u001b[0;34m=\u001b[0m 
\u001b[0mrecording_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrecord\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mpcoll\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0mmax_n\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mn\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0mmax_duration\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mduration\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
    948\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    949\u001b[0m   
\u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0
 ;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/runners/interactive/recording_manager.py\u001b[0m
 in \u001b[0;36mrecord\u001b[0;34m(self, pcolls, max_n, 
max_duration)\u001b[0m\n\u001b[1;32m    459\u001b[0m       
pf.PipelineFragment(\n\u001b[1;32m    460\u001b[0m           
\u001b[0mlist\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0muncomputed_pcolls\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-->
 461\u001b[0;31m           
self.user_pipeline.options).run(blocking=is_remote_run)\n\u001b[0m\u001b[1;32m  
  462\u001b[0m       \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m 
\u001b[0mie\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcurrent_env\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpipeline_result\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0muser_pipeline\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n
 \u001b[1;32m    463\u001b[0m     
\u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/runners/interactive/pipeline_fragment.py\u001b[0m
 in \u001b[0;36mrun\u001b[0;34m(self, display_pipeline_graph, use_cache, 
blocking)\u001b[0m\n\u001b[1;32m    111\u001b[0m       
\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_runner_pipeline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrunner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_force_compute\u001b[0m
 \u001b[0;34m=\u001b[0m \u001b[0;32mnot\u001b[0m 
\u001b[0muse_cache\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
    112\u001b[0m       
\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_runner_pipeline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrunner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_blocking\u001b[0m
 \u001b[0;34m=\u001b[0m 
\u001b[0mblocking\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-->
 113\u001b[0;31m       \u001b[0;32mreturn\u001b[0m 
\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdeduce_fragment\u001
 
b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
    114\u001b[0m     
\u001b[0;32mfinally\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
    115\u001b[0m       
\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_runner_pipeline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrunner\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_skip_display\u001b[0m
 \u001b[0;34m=\u001b[0m 
\u001b[0mpreserved_skip_display\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/runners/interactive/pipeline_fragment.py\u001b[0m
 in \u001b[0;36mdeduce_fragment\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m     
98\u001b[0m         
\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_runner_pipeline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mto_runner_api\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
     99\u001b[0m         
\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_runner_pipeline\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrunner\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-->
 100\u001b[0;31m         self._options)\n\u001b[0m\u001b[1;32m    101\u001b[0m  
   
\u001b[0mie\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcurrent_env\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0madd_derived_pipeline\u001b[0m\u001b[0;34m(\u001b[0m\u001b[
 
0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_runner_pipeline\u001b[0m\u001b[0;34m,\u001b[0m
 
\u001b[0mfragment\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
    102\u001b[0m     \u001b[0;32mreturn\u001b[0m 
\u001b[0mfragment\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            
"\u001b[0;32m/content/beam/sdks/python/apache_beam/pipeline.py\u001b[0m in 
\u001b[0;36mfrom_runner_api\u001b[0;34m(proto, runner, options, 
return_context)\u001b[0m\n\u001b[1;32m    990\u001b[0m       
\u001b[0mpcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpipeline\u001b[0m 
\u001b[0;34m=\u001b[0m 
\u001b[0mp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m
    991\u001b[0m       \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m 
\u001b[0mpcollection\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mproducer\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-->
 992\u001b[0;31m         \u001b[0;32mraise\u001b[0m 
\u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'No producer for 
%s'\u001b[0m \u001b[0;34m%\u001b[0m 
\u001b[0mid\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m
    993\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    994\u001b[0m 
     \u001b[0;31m# Inject PBegin input where 
necessary.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
+            "\u001b[0;31mValueError\u001b[0m: No producer for 
ref_PCollection_PCollection_265"
+          ]
+        }
+      ],
+      "source": [
+        "# Specify the location of source csv file to be processed\n",
+        "source_csv_file = 
'gs://apache-beam-samples/nasa_jpl_asteroid/sample_10000.csv'\n",
+        "\n",
+        "# Initialize pipline\n",
+        "p = beam.Pipeline(InteractiveRunner())\n",
+        "\n",
+        "# Create a deferred Beam DataFrame with the contents of our csv 
file.\n",
+        "beam_df = p | 
beam.dataframe.io.read_csv('/content/drive/MyDrive/apache 
beam/dataset/nasa/sample_10000.csv', splittable=True)\n",
+        "\n",
+        "# Drop irrelavant columns/columns with missing values\n",
+        "beam_df = beam_df.drop(['spk_id', 'full_name','diameter', 'albedo', 
'diameter_sigma'], axis='columns', inplace=False)\n",
+        "\n",
+        "# Get numerical columns/columns with categorical variables\n",
+        "numerical_cols = 
beam_df.select_dtypes(include=np.number).columns.tolist()\n",
+        "categorical_cols = list(set(beam_df.columns) - 
set(numerical_cols))\n",
+        "\n",
+        "# Normalize the numerical variables \n",
+        "beam_df_numerical = beam_df.filter(items=numerical_cols)\n",
+        "beam_df_numerical = (beam_df_numerical - 
beam_df_numerical.mean())/beam_df_numerical.std()\n",
+        "\n",
+        "\n",
+        "# One-hot encode the categorical variables \n",
+        "beam_df_categorical = beam_df.filter(items=categorical_cols)\n",
+        "# ToDo: one hot-encoding step\n",
+        "\n",
+        "# Merge the normalized variables with the one-hot encoded 
variables\n",
+        "preprocessed_dataset = beam_df_categorical.merge(beam_df_numerical, 
left_index = True, right_index = True)\n",
+        "\n",
+        "ib.collect(preprocessed_dataset)"
+      ]
+    },
+    {
+      "cell_type": "markdown",
+      "metadata": {
+        "id": "xZvJTqa3XKI_"
+      },
+      "source": [
+        "# Part II : Process the full dataset with the Distributed Runner\n",
+        "Now that we've showcased how to build and execute the pipeline 
locally using the Interactive Runner. It's time to execute our pipeline on our 
full dataset by switching to a distributed runner. For this example, we will 
exectue our pipeline on 
[Dataflow](https://cloud.google.com/dataflow/docs/guides/deploying-a-pipeline)."
+      ]
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "PROJECT_ID = \"<my-gcp-project>\"\n",
+        "REGION = \"us-west1\"\n",
+        "TEMP_DIR = \"gs://<my-bucket>/tmp\"\n",
+        "OUTPUT_DIR = \"gs://<my-bucket>/dataframe-result\""
+      ],
+      "metadata": {
+        "id": "dDBYbMEWbL4t"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "> ℹ️ Note that we are now processing the full dataset `full.csv` that 
containts approximately 1 million rows. We're also writing the results to a 
`csv` file instead of using `ib.collect()` to materialize the deferred 
dataframe.\n",
+        "\n",
+        "> ℹ️ The only things we need to change to switch from an interactive 
runner towards a distributed one are the pipeline options. The rest of the 
pipeline steps are exactly identical."
+      ],
+      "metadata": {
+        "id": "Qk1GaYoSc9-1"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "# Specify the location of source csv file to be processed (full 
dataset)\n",
+        "source_csv_file = 
'gs://apache-beam-samples/nasa_jpl_asteroid/full.csv'\n",
+        "\n",
+        "# Build a new pipeline that will execute on Dataflow.\n",
+        "p = beam.Pipeline(DataflowRunner(),\n",
+        "                  
options=beam.options.pipeline_options.PipelineOptions(\n",
+        "                      project=PROJECT_ID,\n",
+        "                      region=REGION,\n",
+        "                      temp_location=TEMP_DIR,\n",
+        "                      # Disable autoscaling for a quicker demo\n",
+        "                      autoscaling_algorithm='NONE',\n",
+        "                      num_workers=10))\n",
+        "\n",
+        "# Create a deferred Beam DataFrame with the contents of our csv 
file.\n",
+        "beam_df = p | beam.dataframe.io.read_csv(source_csv_file, 
splittable=True)\n",
+        "\n",
+        "# Drop irrelavant columns/columns with missing values\n",
+        "beam_df = beam_df.drop(['spk_id', 'full_name','diameter', 'albedo', 
'diameter_sigma'], axis='columns', inplace=False)\n",
+        "\n",
+        "# Get numerical columns/columns with categorical variables\n",
+        "numerical_cols = 
beam_df.select_dtypes(include=np.number).columns.tolist()\n",
+        "categorical_cols = list(set(beam_df.columns) - 
set(numerical_cols))\n",
+        "\n",
+        "# Normalize the numerical variables \n",
+        "beam_df_numerical = beam_df.filter(items=numerical_cols)\n",
+        "beam_df_numerical = (beam_df_numerical - 
beam_df_numerical.mean())/beam_df_numerical.std()\n",
+        "\n",
+        "# One-hot encode the categorical variables \n",
+        "beam_df_categorical = beam_df.filter(items=categorical_cols)\n",
+        "# Todo: one hot-encoding step\n",
+        "\n",
+        "# Merge the normalized variables with the one-hot encoded variables  
(Optional)\n",
+        "preprocessed_dataset = beam_df_categorical.merge(beam_numerical_cols, 
left_index = True, right_index = True)\n",
+        "\n",
+        "# Write the pre-processed dataset to csv\n",
+        "preprocessed_dataset.to_csv(os.path.join(OUTPUT_DIR, 
\"preprocessed_data.csv\"))"
+      ],
+      "metadata": {
+        "id": "1XovR0gKbMlK"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "Let's now submit and execute our pipeline."
+      ],
+      "metadata": {
+        "id": "a789u4Yecs_g"
+      }
+    },
+    {
+      "cell_type": "code",
+      "source": [
+        "p.run().wait_until_finish()"
+      ],
+      "metadata": {
+        "id": "pbUlC102bPaZ"
+      },
+      "execution_count": null,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "The execution of the pipeline job will take some time until it 
finishes."
+      ],
+      "metadata": {
+        "id": "dzdqmzKzTOng"
+      }
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "# What's next \n",
+        "\n",
+        "Now that we've seen how we can analyze and preprocess a large-scale 
dataset with the Beam DataFrames API, we can now train a model on a 
classification task on our preprocessed dataset.  \n",
+        "\n",
+        "To learn more on how to get started with classifying structured data, 
refer to:\n",
+        "\n",
+        "*   [Classify structured data with feature 
columns](https://www.tensorflow.org/tutorials/structured_data/feature_columns)\n",

Review Comment:
   Good to know. I'll remove the reference 



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to