echauchot commented on code in PR #24009:
URL: https://github.com/apache/beam/pull/24009#discussion_r1021700719


##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/EvaluationContext.java:
##########
@@ -0,0 +1,119 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.beam.runners.spark.structuredstreaming.translation;
+
+import java.util.Collection;
+import java.util.concurrent.Callable;
+import javax.annotation.Nullable;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.util.WindowedValue;
+import 
org.apache.beam.vendor.guava.v26_0_jre.com.google.common.base.Throwables;
+import org.apache.spark.api.java.function.ForeachFunction;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.execution.ExplainMode;
+import org.apache.spark.util.Utils;
+import org.slf4j.Logger;
+import org.slf4j.LoggerFactory;
+
+/**
+ * The {@link EvaluationContext} is the result of a pipeline {@link 
PipelineTranslator#translate
+ * translation} and can be used to evaluate / run the pipeline.
+ *
+ * <p>However, in some cases pipeline translation involves the early 
evaluation of some parts of the
+ * pipeline. For example, this is necessary to materialize side-inputs. The 
{@link
+ * EvaluationContext} won't re-evaluate such datasets.
+ */
+@Internal
+public final class EvaluationContext {
+  private static final Logger LOG = 
LoggerFactory.getLogger(EvaluationContext.class);
+
+  interface NamedDataset<T> {
+    String name();
+
+    @Nullable
+    Dataset<WindowedValue<T>> dataset();
+  }
+
+  private final Collection<? extends NamedDataset<?>> leaveDatasets;
+  private final SparkSession session;
+
+  EvaluationContext(Collection<? extends NamedDataset<?>> leaveDatasets, 
SparkSession session) {
+    this.leaveDatasets = leaveDatasets;
+    this.session = session;
+  }
+
+  /** Trigger evaluation of all leave datasets. */
+  public void evaluate() {
+    for (NamedDataset<?> ds : leaveDatasets) {
+      final Dataset<?> dataset = ds.dataset();
+      if (dataset == null) {
+        continue;
+      }
+      if (LOG.isDebugEnabled()) {
+        ExplainMode explainMode = ExplainMode.fromString("simple");
+        String execPlan = dataset.queryExecution().explainString(explainMode);
+        LOG.debug("Evaluating dataset {}:\n{}", ds.name(), execPlan);
+      }
+      // force evaluation using a dummy foreach action
+      evaluate(ds.name(), () -> dataset.foreach(NOOP));
+    }
+  }
+
+  /**
+   * The purpose of this utility is to mark the evaluation of Spark actions, 
both during Pipeline
+   * translation, when evaluation is required, and when finally evaluating the 
pipeline.
+   */
+  public static void evaluate(String name, Runnable action) {
+    long startMs = System.currentTimeMillis();
+    try {
+      action.run();
+      LOG.info("Evaluated dataset {} in {}", name, durationSince(startMs));
+    } catch (RuntimeException e) {
+      LOG.error("Failed to evaluate dataset {}: {}", name, 
Throwables.getRootCause(e).getMessage());
+      throw new RuntimeException(e);
+    }
+  }
+
+  /**
+   * The purpose of this utility is to mark the evaluation of Spark actions, 
both during Pipeline
+   * translation, when evaluation is required, and when finally evaluating the 
pipeline.
+   */
+  public static <T> T evaluate(String name, Callable<T> action) {

Review Comment:
   unused



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/batch/PipelineTranslatorBatch.java:
##########
@@ -81,27 +80,13 @@ public class PipelineTranslatorBatch extends 
PipelineTranslator {
 
     TRANSFORM_TRANSLATORS.put(
         SplittableParDo.PrimitiveBoundedRead.class, new 
ReadSourceTranslatorBatch<>());
-

Review Comment:
   It is true that the CreatePCollectionView translation was doing nothing 
except setting the view inside the translation context. You don't need this 
anymore ? This is the preparation for 
[#24035](https://github.com/apache/beam/issues/24035) you mentioned ?



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/TransformTranslator.java:
##########
@@ -118,69 +126,53 @@ public <T> PCollection<T> getOutput(TupleTag<T> tag) {
       return pc;
     }
 
-    public Map<TupleTag<?>, PCollection<?>> getOutputs() {
-      return transform.getOutputs();
-    }
-
     public AppliedPTransform<InT, OutT, PTransform<InT, OutT>> 
getCurrentTransform() {
       return transform;
     }
 
+    @Override
     public <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> 
pCollection) {
-      return cxt.getDataset(pCollection);
+      return state.getDataset(pCollection);
     }
 
-    public <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
-      cxt.putDataset(pCollection, dataset);
+    @Override
+    public <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache) {

Review Comment:
   nit: I'm not a big fan of double negations: cache = false seems better than 
noCache = true



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(

Review Comment:
   I like this API :+1: 



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {

Review Comment:
   elegant use of state and transparent encoder capabilities :+1: 



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/helpers/EncoderProvider.java:
##########
@@ -0,0 +1,58 @@
+/*
+ * Licensed to the Apache Software Foundation (ASF) under one
+ * or more contributor license agreements.  See the NOTICE file
+ * distributed with this work for additional information
+ * regarding copyright ownership.  The ASF licenses this file
+ * to you under the Apache License, Version 2.0 (the
+ * "License"); you may not use this file except in compliance
+ * with the License.  You may obtain a copy of the License at
+ *
+ *     http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS,
+ * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+package org.apache.beam.runners.spark.structuredstreaming.translation.helpers;
+
+import static 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderHelpers.kvEncoder;
+
+import java.util.function.Function;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
+import org.apache.beam.sdk.coders.KvCoder;
+import org.apache.beam.sdk.values.KV;
+import org.apache.spark.sql.Encoder;
+
+@Internal
+public interface EncoderProvider {
+  interface Factory<T> extends Function<Coder<T>, Encoder<T>> {
+    Factory<?> INSTANCE = EncoderHelpers::encoderFor;
+  }
+
+  <T> Encoder<T> encoderOf(Coder<T> coder, Factory<T> factory);
+
+  default <T> Encoder<T> encoderOf(Coder<T> coder) {
+    return coder instanceof KvCoder
+        ? (Encoder<T>) kvEncoderOf((KvCoder) coder)
+        : encoderOf(coder, encoderFactory());
+  }
+
+  default <K, V> Encoder<KV<K, V>> kvEncoderOf(KvCoder<K, V> coder) {
+    return encoderOf(coder, c -> kvEncoder(keyEncoderOf(coder), 
valueEncoderOf(coder)));
+  }
+
+  default <K, V> Encoder<K> keyEncoderOf(KvCoder<K, V> coder) {
+    return encoderOf(coder.getKeyCoder(), encoderFactory());
+  }
+
+  default <K, V> Encoder<V> valueEncoderOf(KvCoder<K, V> coder) {
+    return encoderOf(coder.getValueCoder(), encoderFactory());
+  }
+
+  default <T> Factory<T> encoderFactory() {
+    return (Factory<T>) Factory.INSTANCE;

Review Comment:
   I would prefer that you inline the INSTANCE here (as it is used only here) 
and leave Factory as a simple tagging interface over Function. That would 
remove the need for the cast and the strange Factory containing a Factory.



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {

Review Comment:
   good also to avoid storing all the datasets and just keep the current one 
and then forget about it



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {
+    <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> pCollection);
+
+    <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache);
 
-    /** Uses the batch mode. */
-    BATCH,
+    default <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
+      putDataset(pCollection, dataset, false);
+    }
 
-    /** Uses the streaming mode. */
-    STREAMING
+    SerializablePipelineOptions getSerializableOptions();
+
+    SparkSession getSparkSession();
   }
 
-  /** Traverses the Pipeline to determine the {@link TranslationMode} for this 
pipeline. */
-  private static class TranslationModeDetector extends 
Pipeline.PipelineVisitor.Defaults {
-    private static final Logger LOG = 
LoggerFactory.getLogger(TranslationModeDetector.class);
+  /**
+   * {@link PTransformVisitor} that translates supported {@link PTransform 
PTransforms} into their
+   * Spark correspondence.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted.
+   */
+  private class TranslatingVisitor extends PTransformVisitor implements 
TranslationState {
+    private final Map<PCollection<?>, TranslationResult<?>> translationResults;
+    private final Map<Coder<?>, ExpressionEncoder<?>> encoders;
+    private final SparkSession sparkSession;
+    private final SerializablePipelineOptions serializableOptions;
+    private final StorageLevel storageLevel;
+
+    private final Set<TranslationResult<?>> leaves;
+
+    public TranslatingVisitor(
+        SparkSession sparkSession,
+        SparkCommonPipelineOptions options,
+        Map<PCollection<?>, TranslationResult<?>> translationResults) {
+      this.sparkSession = sparkSession;
+      this.translationResults = translationResults;
+      this.serializableOptions = new SerializablePipelineOptions(options);
+      this.storageLevel = StorageLevel.fromString(options.getStorageLevel());
+      this.encoders = new HashMap<>();
+      this.leaves = new HashSet<>();
+    }
 
-    private TranslationMode translationMode;
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+
+      AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
+          (AppliedPTransform) node.toAppliedPTransform(getPipeline());
+      try {
+        LOG.info(
+            "Translating {}: {}",
+            node.isCompositeNode() ? "composite" : "primitive",
+            node.getFullName());
+        translator.translate(transform, appliedTransform, this);
+      } catch (IOException e) {
+        throw new RuntimeException(e);
+      }
+    }
 
-    TranslationModeDetector(TranslationMode defaultMode) {
-      this.translationMode = defaultMode;
+    @Override
+    public <T> Encoder<T> encoderOf(Coder<T> coder, Factory<T> factory) {
+      return (Encoder<T>) encoders.computeIfAbsent(coder, (Factory) factory);
     }
 
-    TranslationModeDetector() {
-      this(TranslationMode.BATCH);
+    private <T> TranslationResult<T> getResult(PCollection<T> pCollection) {
+      return (TranslationResult<T>) 
checkStateNotNull(translationResults.get(pCollection));
     }
 
-    TranslationMode getTranslationMode() {
-      return translationMode;
+    @Override
+    public <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> 
pCollection) {
+      return checkStateNotNull(getResult(pCollection).dataset);
     }
 
     @Override
-    public void visitValue(PValue value, TransformHierarchy.Node producer) {
-      if (translationMode.equals(TranslationMode.BATCH)) {
-        if (value instanceof PCollection
-            && ((PCollection) value).isBounded() == 
PCollection.IsBounded.UNBOUNDED) {
-          LOG.info(
-              "Found unbounded PCollection {}. Switching to streaming 
execution.", value.getName());
-          translationMode = TranslationMode.STREAMING;
+    public <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache) {
+      TranslationResult<T> result = getResult(pCollection);
+      if (!noCache && result.dependentTransforms.size() > 1) {
+        LOG.info("Dataset {} will be cached.", result.name);
+        result.dataset = dataset.persist(storageLevel); // use NONE to disable
+      } else {
+        result.dataset = dataset;
+        if (result.dependentTransforms.isEmpty()) {
+          leaves.add(result);
         }
       }
     }
-  }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline utility methods
-  // 
--------------------------------------------------------------------------------------------
+    @Override
+    public SerializablePipelineOptions getSerializableOptions() {
+      return serializableOptions;
+    }
 
-  /** Get a {@link TransformTranslator} for the given {@link 
TransformHierarchy.Node}. */
-  protected abstract @Nullable <
-          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      TransformTranslator<InT, OutT, TransformT> getTransformTranslator(
-          @Nullable TransformT transform);
-
-  /** Apply the given TransformTranslator to the given node. */
-  private <InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      void applyTransformTranslator(
-          TransformHierarchy.Node node,
-          TransformT transform,
-          TransformTranslator<InT, OutT, TransformT> transformTranslator) {
-    // create the applied PTransform on the translationContext
-    AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
-        (AppliedPTransform) node.toAppliedPTransform(getPipeline());
-    try {
-      transformTranslator.translate(transform, appliedTransform, 
translationContext);
-    } catch (IOException e) {
-      throw new RuntimeException(e);
+    @Override
+    public SparkSession getSparkSession() {
+      return sparkSession;
     }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline visitor entry point
-  // 
--------------------------------------------------------------------------------------------
-
   /**
-   * Translates the pipeline by passing this class as a visitor.
+   * {@link PTransformVisitor} that analyses dependencies of supported {@link 
PTransform
+   * PTransforms} to help identify cache candidates.
    *
-   * @param pipeline The pipeline to be translated
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
    */
-  public void translate(Pipeline pipeline) {
-    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
-    pipeline.traverseTopologically(this);
+  private class DependencyVisitor extends PTransformVisitor {
+    private final Map<PCollection<?>, TranslationResult<?>> results = new 
HashMap<>();
+
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+      for (PCollection<?> pOut : node.getOutputs().values()) {
+        results.put(pOut, new TranslationResult<>(pOut));
+        for (Map.Entry<TupleTag<?>, PCollection<?>> entry : 
node.getInputs().entrySet()) {
+          TranslationResult<?> input = 
checkStateNotNull(results.get(entry.getValue()));
+          input.dependentTransforms.add(transform);
+        }
+      }
+    }

Review Comment:
   I don't understand this algo especially the nested loops because `pOut` is 
not referenced inside the inner loop.
   Why don't you populate `results` based on outputs first and then do the 
second loop?
   
   There might be something I don't get, if it's the case, please add some 
comments to the algo for ease of maintenance.



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {
+    <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> pCollection);
+
+    <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache);
 
-    /** Uses the batch mode. */
-    BATCH,
+    default <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
+      putDataset(pCollection, dataset, false);
+    }
 
-    /** Uses the streaming mode. */
-    STREAMING
+    SerializablePipelineOptions getSerializableOptions();
+
+    SparkSession getSparkSession();
   }
 
-  /** Traverses the Pipeline to determine the {@link TranslationMode} for this 
pipeline. */
-  private static class TranslationModeDetector extends 
Pipeline.PipelineVisitor.Defaults {
-    private static final Logger LOG = 
LoggerFactory.getLogger(TranslationModeDetector.class);
+  /**
+   * {@link PTransformVisitor} that translates supported {@link PTransform 
PTransforms} into their
+   * Spark correspondence.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted.
+   */
+  private class TranslatingVisitor extends PTransformVisitor implements 
TranslationState {
+    private final Map<PCollection<?>, TranslationResult<?>> translationResults;
+    private final Map<Coder<?>, ExpressionEncoder<?>> encoders;
+    private final SparkSession sparkSession;
+    private final SerializablePipelineOptions serializableOptions;
+    private final StorageLevel storageLevel;
+
+    private final Set<TranslationResult<?>> leaves;
+
+    public TranslatingVisitor(
+        SparkSession sparkSession,
+        SparkCommonPipelineOptions options,
+        Map<PCollection<?>, TranslationResult<?>> translationResults) {
+      this.sparkSession = sparkSession;
+      this.translationResults = translationResults;
+      this.serializableOptions = new SerializablePipelineOptions(options);
+      this.storageLevel = StorageLevel.fromString(options.getStorageLevel());
+      this.encoders = new HashMap<>();
+      this.leaves = new HashSet<>();
+    }
 
-    private TranslationMode translationMode;
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+
+      AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
+          (AppliedPTransform) node.toAppliedPTransform(getPipeline());
+      try {
+        LOG.info(
+            "Translating {}: {}",
+            node.isCompositeNode() ? "composite" : "primitive",
+            node.getFullName());
+        translator.translate(transform, appliedTransform, this);
+      } catch (IOException e) {
+        throw new RuntimeException(e);
+      }
+    }
 
-    TranslationModeDetector(TranslationMode defaultMode) {
-      this.translationMode = defaultMode;
+    @Override
+    public <T> Encoder<T> encoderOf(Coder<T> coder, Factory<T> factory) {
+      return (Encoder<T>) encoders.computeIfAbsent(coder, (Factory) factory);
     }
 
-    TranslationModeDetector() {
-      this(TranslationMode.BATCH);
+    private <T> TranslationResult<T> getResult(PCollection<T> pCollection) {
+      return (TranslationResult<T>) 
checkStateNotNull(translationResults.get(pCollection));
     }
 
-    TranslationMode getTranslationMode() {
-      return translationMode;
+    @Override
+    public <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> 
pCollection) {
+      return checkStateNotNull(getResult(pCollection).dataset);
     }
 
     @Override
-    public void visitValue(PValue value, TransformHierarchy.Node producer) {
-      if (translationMode.equals(TranslationMode.BATCH)) {
-        if (value instanceof PCollection
-            && ((PCollection) value).isBounded() == 
PCollection.IsBounded.UNBOUNDED) {
-          LOG.info(
-              "Found unbounded PCollection {}. Switching to streaming 
execution.", value.getName());
-          translationMode = TranslationMode.STREAMING;
+    public <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache) {
+      TranslationResult<T> result = getResult(pCollection);
+      if (!noCache && result.dependentTransforms.size() > 1) {
+        LOG.info("Dataset {} will be cached.", result.name);
+        result.dataset = dataset.persist(storageLevel); // use NONE to disable
+      } else {
+        result.dataset = dataset;
+        if (result.dependentTransforms.isEmpty()) {
+          leaves.add(result);
         }
       }
     }
-  }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline utility methods
-  // 
--------------------------------------------------------------------------------------------
+    @Override
+    public SerializablePipelineOptions getSerializableOptions() {
+      return serializableOptions;
+    }
 
-  /** Get a {@link TransformTranslator} for the given {@link 
TransformHierarchy.Node}. */
-  protected abstract @Nullable <
-          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      TransformTranslator<InT, OutT, TransformT> getTransformTranslator(
-          @Nullable TransformT transform);
-
-  /** Apply the given TransformTranslator to the given node. */
-  private <InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      void applyTransformTranslator(
-          TransformHierarchy.Node node,
-          TransformT transform,
-          TransformTranslator<InT, OutT, TransformT> transformTranslator) {
-    // create the applied PTransform on the translationContext
-    AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
-        (AppliedPTransform) node.toAppliedPTransform(getPipeline());
-    try {
-      transformTranslator.translate(transform, appliedTransform, 
translationContext);
-    } catch (IOException e) {
-      throw new RuntimeException(e);
+    @Override
+    public SparkSession getSparkSession() {
+      return sparkSession;
     }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline visitor entry point
-  // 
--------------------------------------------------------------------------------------------
-
   /**
-   * Translates the pipeline by passing this class as a visitor.
+   * {@link PTransformVisitor} that analyses dependencies of supported {@link 
PTransform
+   * PTransforms} to help identify cache candidates.
    *
-   * @param pipeline The pipeline to be translated
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
    */
-  public void translate(Pipeline pipeline) {
-    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
-    pipeline.traverseTopologically(this);
+  private class DependencyVisitor extends PTransformVisitor {
+    private final Map<PCollection<?>, TranslationResult<?>> results = new 
HashMap<>();
+
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+      for (PCollection<?> pOut : node.getOutputs().values()) {
+        results.put(pOut, new TranslationResult<>(pOut));
+        for (Map.Entry<TupleTag<?>, PCollection<?>> entry : 
node.getInputs().entrySet()) {
+          TranslationResult<?> input = 
checkStateNotNull(results.get(entry.getValue()));
+          input.dependentTransforms.add(transform);
+        }
+      }
+    }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline Visitor Methods
-  // 
--------------------------------------------------------------------------------------------
+  /**
+   * An abstract {@link PipelineVisitor} that visits all translatable {@link 
PTransform} pipeline
+   * nodes of a pipeline with the respective {@link TransformTranslator}.
+   *
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
+   */
+  private abstract class PTransformVisitor extends PipelineVisitor.Defaults {
 
-  @Override
-  public CompositeBehavior enterCompositeTransform(TransformHierarchy.Node 
node) {
-    PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
-    TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
transformTranslator =
-        getTransformTranslator(transform);
+    /** Visit the {@link PTransform} with its respective {@link 
TransformTranslator}. */
+    abstract <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator);
 
-    if (transformTranslator != null) {
-      LOG.info("Translating composite: {}", node.getFullName());
-      applyTransformTranslator(node, transform, transformTranslator);
-      return CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
-    } else {
-      return CompositeBehavior.ENTER_TRANSFORM;
+    @Override
+    public final CompositeBehavior enterCompositeTransform(Node node) {
+      PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
+      TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
translator =
+          getTranslator(transform);
+      if (transform != null && translator != null) {
+        visit(node, transform, translator);
+        return DO_NOT_ENTER_TRANSFORM;
+      } else {
+        return ENTER_TRANSFORM;
+      }
+    }
+
+    @Override
+    public final void visitPrimitiveTransform(Node node) {
+      PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
+      if (transform == null || 
transform.getClass().equals(View.CreatePCollectionView.class)) {
+        return; // ignore, nothing to be translated here
+      }
+      TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
translator =
+          getTranslator(transform);
+      if (translator == null) {
+        String urn = PTransformTranslation.urnForTransform(transform);
+        throw new UnsupportedOperationException("Transform " + urn + " is not 
supported.");
+      }
+      visit(node, transform, translator);
     }
-  }
 
-  @Override
-  public void visitPrimitiveTransform(TransformHierarchy.Node node) {
-    LOG.info("Translating primitive: {}", node.getFullName());
-    // get the transformation corresponding to the node we are
-    // currently visiting and translate it into its Spark alternative.
-    PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
-    TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
transformTranslator =
-        getTransformTranslator(transform);
-
-    if (transformTranslator == null) {
-      String transformUrn = 
PTransformTranslation.urnForTransform(node.getTransform());
-      throw new UnsupportedOperationException(
-          "The transform " + transformUrn + " is currently not supported.");
-    }
-    applyTransformTranslator(node, transform, transformTranslator);
+    /** {@link TransformTranslator} for {@link PTransform} if translation is 
known and supported. */
+    private @Nullable TransformTranslator<PInput, POutput, PTransform<PInput, 
POutput>>

Review Comment:
   please rename to getTransformTranslatorIfTranslatable for clarity



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/batch/ParDoTranslatorBatch.java:
##########
@@ -220,8 +225,9 @@ private SideInputBroadcast createBroadcastSideInputs(
       Coder<WindowedValue<?>> windowedValueCoder =
           (Coder<WindowedValue<?>>)
               (Coder<?>) WindowedValue.getFullCoder(pc.getCoder(), 
windowCoder);
-      Dataset<WindowedValue<?>> broadcastSet = 
context.getSideInputDataset(sideInput);
-      List<WindowedValue<?>> valuesList = broadcastSet.collectAsList();
+      Dataset<WindowedValue<?>> broadcastSet = 
context.getDataset((PCollection) pc);
+      List<WindowedValue<?>> valuesList =

Review Comment:
   now I see the preparation for side inputs you mentioned. :+1: 
   You evaluate the associated PCollection when you need to broadcast it for 
side inputs



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);

Review Comment:
   Very clear ! :+1: 



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/TransformTranslator.java:
##########
@@ -51,22 +48,24 @@
 import scala.reflect.ClassTag;
 
 /**
- * Supports translation between a Beam transform, and Spark's operations on 
Datasets.
+ * A {@link TransformTranslator} provides the capability to translate a 
specific primitive or
+ * composite {@link PTransform} into its Spark correspondence.
  *
- * <p>WARNING: Do not make this class serializable! It could easily hide 
situations where
- * unnecessary references leak into Spark closures.
+ * <p>WARNING: {@link TransformTranslator TransformTranslators} should never 
be serializable! This
+ * could easily hide situations where unnecessary references leak into Spark 
closures.
  */
+@Internal
 public abstract class TransformTranslator<
     InT extends PInput, OutT extends POutput, TransformT extends PTransform<? 
extends InT, OutT>> {
 
   protected abstract void translate(TransformT transform, Context cxt) throws 
IOException;
 
-  public final void translate(
+  protected final void translate(

Review Comment:
   can be package local now that this method is no more the one that is 
overridden



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {
+    <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> pCollection);
+
+    <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache);
 
-    /** Uses the batch mode. */
-    BATCH,
+    default <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
+      putDataset(pCollection, dataset, false);
+    }
 
-    /** Uses the streaming mode. */
-    STREAMING
+    SerializablePipelineOptions getSerializableOptions();
+
+    SparkSession getSparkSession();
   }
 
-  /** Traverses the Pipeline to determine the {@link TranslationMode} for this 
pipeline. */
-  private static class TranslationModeDetector extends 
Pipeline.PipelineVisitor.Defaults {
-    private static final Logger LOG = 
LoggerFactory.getLogger(TranslationModeDetector.class);
+  /**
+   * {@link PTransformVisitor} that translates supported {@link PTransform 
PTransforms} into their
+   * Spark correspondence.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted.
+   */
+  private class TranslatingVisitor extends PTransformVisitor implements 
TranslationState {
+    private final Map<PCollection<?>, TranslationResult<?>> translationResults;
+    private final Map<Coder<?>, ExpressionEncoder<?>> encoders;
+    private final SparkSession sparkSession;
+    private final SerializablePipelineOptions serializableOptions;
+    private final StorageLevel storageLevel;
+
+    private final Set<TranslationResult<?>> leaves;
+
+    public TranslatingVisitor(
+        SparkSession sparkSession,
+        SparkCommonPipelineOptions options,
+        Map<PCollection<?>, TranslationResult<?>> translationResults) {
+      this.sparkSession = sparkSession;
+      this.translationResults = translationResults;
+      this.serializableOptions = new SerializablePipelineOptions(options);
+      this.storageLevel = StorageLevel.fromString(options.getStorageLevel());
+      this.encoders = new HashMap<>();
+      this.leaves = new HashSet<>();
+    }
 
-    private TranslationMode translationMode;
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+
+      AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =

Review Comment:
   Better use of types :+1: 



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/batch/PipelineTranslatorBatch.java:
##########
@@ -81,27 +80,13 @@ public class PipelineTranslatorBatch extends 
PipelineTranslator {
 
     TRANSFORM_TRANSLATORS.put(
         SplittableParDo.PrimitiveBoundedRead.class, new 
ReadSourceTranslatorBatch<>());
-
-    TRANSFORM_TRANSLATORS.put(
-        View.CreatePCollectionView.class, new 
CreatePCollectionViewTranslatorBatch<>());
-  }
-
-  public PipelineTranslatorBatch(SparkStructuredStreamingPipelineOptions 
options) {
-    translationContext = new TranslationContext(options);
   }
 
-  /** Returns a translator for the given node, if it is possible, otherwise 
null. */
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
   @Override
   @Nullable
   protected <InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      TransformTranslator<InT, OutT, TransformT> getTransformTranslator(
-          @Nullable TransformT transform) {
-    // Root of the graph is null
-    if (transform == null) {
-      return null;
-    }
-    TransformTranslator<InT, OutT, TransformT> translator =
-        TRANSFORM_TRANSLATORS.get(transform.getClass());
-    return translator != null && translator.canTranslate(transform) ? 
translator : null;

Review Comment:
   you no more check that the transform can be translated here but you rather 
do it in the visitor. Right?



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {
+    <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> pCollection);
+
+    <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache);
 
-    /** Uses the batch mode. */
-    BATCH,
+    default <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
+      putDataset(pCollection, dataset, false);
+    }
 
-    /** Uses the streaming mode. */
-    STREAMING
+    SerializablePipelineOptions getSerializableOptions();
+
+    SparkSession getSparkSession();
   }
 
-  /** Traverses the Pipeline to determine the {@link TranslationMode} for this 
pipeline. */
-  private static class TranslationModeDetector extends 
Pipeline.PipelineVisitor.Defaults {
-    private static final Logger LOG = 
LoggerFactory.getLogger(TranslationModeDetector.class);
+  /**
+   * {@link PTransformVisitor} that translates supported {@link PTransform 
PTransforms} into their
+   * Spark correspondence.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted.
+   */
+  private class TranslatingVisitor extends PTransformVisitor implements 
TranslationState {
+    private final Map<PCollection<?>, TranslationResult<?>> translationResults;
+    private final Map<Coder<?>, ExpressionEncoder<?>> encoders;
+    private final SparkSession sparkSession;
+    private final SerializablePipelineOptions serializableOptions;
+    private final StorageLevel storageLevel;
+
+    private final Set<TranslationResult<?>> leaves;
+
+    public TranslatingVisitor(
+        SparkSession sparkSession,
+        SparkCommonPipelineOptions options,
+        Map<PCollection<?>, TranslationResult<?>> translationResults) {
+      this.sparkSession = sparkSession;
+      this.translationResults = translationResults;
+      this.serializableOptions = new SerializablePipelineOptions(options);
+      this.storageLevel = StorageLevel.fromString(options.getStorageLevel());
+      this.encoders = new HashMap<>();
+      this.leaves = new HashSet<>();
+    }
 
-    private TranslationMode translationMode;
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+
+      AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
+          (AppliedPTransform) node.toAppliedPTransform(getPipeline());
+      try {
+        LOG.info(
+            "Translating {}: {}",
+            node.isCompositeNode() ? "composite" : "primitive",
+            node.getFullName());
+        translator.translate(transform, appliedTransform, this);
+      } catch (IOException e) {
+        throw new RuntimeException(e);
+      }
+    }
 
-    TranslationModeDetector(TranslationMode defaultMode) {
-      this.translationMode = defaultMode;
+    @Override
+    public <T> Encoder<T> encoderOf(Coder<T> coder, Factory<T> factory) {
+      return (Encoder<T>) encoders.computeIfAbsent(coder, (Factory) factory);
     }
 
-    TranslationModeDetector() {
-      this(TranslationMode.BATCH);
+    private <T> TranslationResult<T> getResult(PCollection<T> pCollection) {
+      return (TranslationResult<T>) 
checkStateNotNull(translationResults.get(pCollection));
     }
 
-    TranslationMode getTranslationMode() {
-      return translationMode;
+    @Override
+    public <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> 
pCollection) {
+      return checkStateNotNull(getResult(pCollection).dataset);
     }
 
     @Override
-    public void visitValue(PValue value, TransformHierarchy.Node producer) {
-      if (translationMode.equals(TranslationMode.BATCH)) {
-        if (value instanceof PCollection
-            && ((PCollection) value).isBounded() == 
PCollection.IsBounded.UNBOUNDED) {
-          LOG.info(
-              "Found unbounded PCollection {}. Switching to streaming 
execution.", value.getName());
-          translationMode = TranslationMode.STREAMING;
+    public <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache) {
+      TranslationResult<T> result = getResult(pCollection);
+      if (!noCache && result.dependentTransforms.size() > 1) {
+        LOG.info("Dataset {} will be cached.", result.name);
+        result.dataset = dataset.persist(storageLevel); // use NONE to disable
+      } else {
+        result.dataset = dataset;
+        if (result.dependentTransforms.isEmpty()) {
+          leaves.add(result);
         }
       }
     }
-  }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline utility methods
-  // 
--------------------------------------------------------------------------------------------
+    @Override
+    public SerializablePipelineOptions getSerializableOptions() {
+      return serializableOptions;
+    }
 
-  /** Get a {@link TransformTranslator} for the given {@link 
TransformHierarchy.Node}. */
-  protected abstract @Nullable <
-          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      TransformTranslator<InT, OutT, TransformT> getTransformTranslator(
-          @Nullable TransformT transform);
-
-  /** Apply the given TransformTranslator to the given node. */
-  private <InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      void applyTransformTranslator(
-          TransformHierarchy.Node node,
-          TransformT transform,
-          TransformTranslator<InT, OutT, TransformT> transformTranslator) {
-    // create the applied PTransform on the translationContext
-    AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
-        (AppliedPTransform) node.toAppliedPTransform(getPipeline());
-    try {
-      transformTranslator.translate(transform, appliedTransform, 
translationContext);
-    } catch (IOException e) {
-      throw new RuntimeException(e);
+    @Override
+    public SparkSession getSparkSession() {
+      return sparkSession;
     }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline visitor entry point
-  // 
--------------------------------------------------------------------------------------------
-
   /**
-   * Translates the pipeline by passing this class as a visitor.
+   * {@link PTransformVisitor} that analyses dependencies of supported {@link 
PTransform
+   * PTransforms} to help identify cache candidates.
    *
-   * @param pipeline The pipeline to be translated
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
    */
-  public void translate(Pipeline pipeline) {
-    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
-    pipeline.traverseTopologically(this);
+  private class DependencyVisitor extends PTransformVisitor {
+    private final Map<PCollection<?>, TranslationResult<?>> results = new 
HashMap<>();
+
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+      for (PCollection<?> pOut : node.getOutputs().values()) {
+        results.put(pOut, new TranslationResult<>(pOut));
+        for (Map.Entry<TupleTag<?>, PCollection<?>> entry : 
node.getInputs().entrySet()) {
+          TranslationResult<?> input = 
checkStateNotNull(results.get(entry.getValue()));
+          input.dependentTransforms.add(transform);
+        }
+      }
+    }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline Visitor Methods
-  // 
--------------------------------------------------------------------------------------------
+  /**
+   * An abstract {@link PipelineVisitor} that visits all translatable {@link 
PTransform} pipeline
+   * nodes of a pipeline with the respective {@link TransformTranslator}.
+   *
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
+   */
+  private abstract class PTransformVisitor extends PipelineVisitor.Defaults {
 
-  @Override
-  public CompositeBehavior enterCompositeTransform(TransformHierarchy.Node 
node) {
-    PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
-    TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
transformTranslator =
-        getTransformTranslator(transform);
+    /** Visit the {@link PTransform} with its respective {@link 
TransformTranslator}. */
+    abstract <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator);
 
-    if (transformTranslator != null) {
-      LOG.info("Translating composite: {}", node.getFullName());
-      applyTransformTranslator(node, transform, transformTranslator);
-      return CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
-    } else {
-      return CompositeBehavior.ENTER_TRANSFORM;
+    @Override
+    public final CompositeBehavior enterCompositeTransform(Node node) {
+      PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
+      TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
translator =
+          getTranslator(transform);
+      if (transform != null && translator != null) {
+        visit(node, transform, translator);
+        return DO_NOT_ENTER_TRANSFORM;
+      } else {
+        return ENTER_TRANSFORM;
+      }
+    }
+
+    @Override
+    public final void visitPrimitiveTransform(Node node) {
+      PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
+      if (transform == null || 
transform.getClass().equals(View.CreatePCollectionView.class)) {
+        return; // ignore, nothing to be translated here

Review Comment:
   cf question on 
[PipelineTranslatorBatch.java](https://github.com/apache/beam/pull/24009/files#diff-135056b6cae8cfffc97af038ebe5d427e0ce4f58a0c947e510a748e0879cb2b3).
 Can you put a comment to elaborate the PCollectionView case ?



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {
+    <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> pCollection);
+
+    <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache);
 
-    /** Uses the batch mode. */
-    BATCH,
+    default <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
+      putDataset(pCollection, dataset, false);
+    }
 
-    /** Uses the streaming mode. */
-    STREAMING
+    SerializablePipelineOptions getSerializableOptions();
+
+    SparkSession getSparkSession();
   }
 
-  /** Traverses the Pipeline to determine the {@link TranslationMode} for this 
pipeline. */
-  private static class TranslationModeDetector extends 
Pipeline.PipelineVisitor.Defaults {
-    private static final Logger LOG = 
LoggerFactory.getLogger(TranslationModeDetector.class);
+  /**
+   * {@link PTransformVisitor} that translates supported {@link PTransform 
PTransforms} into their
+   * Spark correspondence.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted.
+   */
+  private class TranslatingVisitor extends PTransformVisitor implements 
TranslationState {
+    private final Map<PCollection<?>, TranslationResult<?>> translationResults;
+    private final Map<Coder<?>, ExpressionEncoder<?>> encoders;
+    private final SparkSession sparkSession;
+    private final SerializablePipelineOptions serializableOptions;
+    private final StorageLevel storageLevel;
+
+    private final Set<TranslationResult<?>> leaves;
+
+    public TranslatingVisitor(
+        SparkSession sparkSession,
+        SparkCommonPipelineOptions options,
+        Map<PCollection<?>, TranslationResult<?>> translationResults) {
+      this.sparkSession = sparkSession;
+      this.translationResults = translationResults;
+      this.serializableOptions = new SerializablePipelineOptions(options);
+      this.storageLevel = StorageLevel.fromString(options.getStorageLevel());
+      this.encoders = new HashMap<>();
+      this.leaves = new HashSet<>();
+    }
 
-    private TranslationMode translationMode;
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+
+      AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
+          (AppliedPTransform) node.toAppliedPTransform(getPipeline());
+      try {
+        LOG.info(
+            "Translating {}: {}",
+            node.isCompositeNode() ? "composite" : "primitive",
+            node.getFullName());
+        translator.translate(transform, appliedTransform, this);
+      } catch (IOException e) {
+        throw new RuntimeException(e);
+      }
+    }
 
-    TranslationModeDetector(TranslationMode defaultMode) {
-      this.translationMode = defaultMode;
+    @Override
+    public <T> Encoder<T> encoderOf(Coder<T> coder, Factory<T> factory) {
+      return (Encoder<T>) encoders.computeIfAbsent(coder, (Factory) factory);
     }
 
-    TranslationModeDetector() {
-      this(TranslationMode.BATCH);
+    private <T> TranslationResult<T> getResult(PCollection<T> pCollection) {
+      return (TranslationResult<T>) 
checkStateNotNull(translationResults.get(pCollection));
     }
 
-    TranslationMode getTranslationMode() {
-      return translationMode;
+    @Override
+    public <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> 
pCollection) {
+      return checkStateNotNull(getResult(pCollection).dataset);
     }
 
     @Override
-    public void visitValue(PValue value, TransformHierarchy.Node producer) {
-      if (translationMode.equals(TranslationMode.BATCH)) {
-        if (value instanceof PCollection
-            && ((PCollection) value).isBounded() == 
PCollection.IsBounded.UNBOUNDED) {
-          LOG.info(
-              "Found unbounded PCollection {}. Switching to streaming 
execution.", value.getName());
-          translationMode = TranslationMode.STREAMING;
+    public <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache) {
+      TranslationResult<T> result = getResult(pCollection);
+      if (!noCache && result.dependentTransforms.size() > 1) {

Review Comment:
   nit: for symmetry with else branch: use 
`!result.dependentTransforms.isEmpty()`



##########
runners/spark/3/src/main/java/org/apache/beam/runners/spark/structuredstreaming/translation/PipelineTranslator.java:
##########
@@ -17,170 +17,336 @@
  */
 package org.apache.beam.runners.spark.structuredstreaming.translation;
 
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
+import static 
org.apache.beam.sdk.Pipeline.PipelineVisitor.CompositeBehavior.ENTER_TRANSFORM;
+import static org.apache.beam.sdk.util.Preconditions.checkStateNotNull;
+import static org.apache.beam.sdk.values.PCollection.IsBounded.UNBOUNDED;
+
 import java.io.IOException;
+import java.util.HashMap;
+import java.util.HashSet;
+import java.util.Map;
+import java.util.Set;
+import javax.annotation.Nullable;
 import org.apache.beam.runners.core.construction.PTransformTranslation;
+import org.apache.beam.runners.core.construction.SerializablePipelineOptions;
+import org.apache.beam.runners.spark.SparkCommonPipelineOptions;
+import 
org.apache.beam.runners.spark.structuredstreaming.translation.helpers.EncoderProvider;
 import org.apache.beam.sdk.Pipeline;
+import org.apache.beam.sdk.Pipeline.PipelineVisitor;
+import org.apache.beam.sdk.annotations.Internal;
+import org.apache.beam.sdk.coders.Coder;
 import org.apache.beam.sdk.options.StreamingOptions;
 import org.apache.beam.sdk.runners.AppliedPTransform;
-import org.apache.beam.sdk.runners.TransformHierarchy;
+import org.apache.beam.sdk.runners.TransformHierarchy.Node;
 import org.apache.beam.sdk.transforms.PTransform;
+import org.apache.beam.sdk.transforms.View;
+import org.apache.beam.sdk.util.WindowedValue;
 import org.apache.beam.sdk.values.PCollection;
 import org.apache.beam.sdk.values.PInput;
 import org.apache.beam.sdk.values.POutput;
 import org.apache.beam.sdk.values.PValue;
-import org.checkerframework.checker.nullness.qual.Nullable;
+import org.apache.beam.sdk.values.TupleTag;
+import org.apache.spark.sql.Dataset;
+import org.apache.spark.sql.Encoder;
+import org.apache.spark.sql.SparkSession;
+import org.apache.spark.sql.catalyst.encoders.ExpressionEncoder;
+import org.apache.spark.storage.StorageLevel;
 import org.slf4j.Logger;
 import org.slf4j.LoggerFactory;
 
 /**
- * {@link Pipeline.PipelineVisitor} that translates the Beam operators to 
their Spark counterparts.
- * It also does the pipeline preparation: mode detection, transforms 
replacement, classpath
- * preparation.
+ * The pipeline translator translates a Beam {@link Pipeline} into a Spark 
correspondence, that can
+ * then be evaluated.
+ *
+ * <p>The translation involves traversing the hierarchy of a pipeline multiple 
times:
+ *
+ * <ol>
+ *   <li>Detect if {@link StreamingOptions#setStreaming streaming} mode is 
required.
+ *   <li>Identify datasets that are repeatedly used as input and should be 
cached.
+ *   <li>And finally, translate each primitive or composite {@link PTransform} 
that is {@link
+ *       #getTransformTranslator known} and {@link 
TransformTranslator#canTranslate supported} into
+ *       its Spark correspondence. If a composite is not supported, it will be 
expanded further into
+ *       its parts and translated then.
+ * </ol>
  */
-@SuppressWarnings({
-  "nullness" // TODO(https://github.com/apache/beam/issues/20497)
-})
-public abstract class PipelineTranslator extends 
Pipeline.PipelineVisitor.Defaults {
+@Internal
+public abstract class PipelineTranslator {
   private static final Logger LOG = 
LoggerFactory.getLogger(PipelineTranslator.class);
-  protected TranslationContext translationContext;
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline preparation methods
-  // 
--------------------------------------------------------------------------------------------
   public static void replaceTransforms(Pipeline pipeline, StreamingOptions 
options) {
     
pipeline.replaceAll(SparkTransformOverrides.getDefaultOverrides(options.isStreaming()));
   }
 
   /**
-   * Visit the pipeline to determine the translation mode (batch/streaming) 
and update options
-   * accordingly.
+   * Analyse the pipeline to determine if we have to switch to streaming mode 
for the pipeline
+   * translation and update {@link StreamingOptions} accordingly.
    */
-  public static void detectTranslationMode(Pipeline pipeline, StreamingOptions 
options) {
-    TranslationModeDetector detector = new TranslationModeDetector();
+  public static void detectStreamingMode(Pipeline pipeline, StreamingOptions 
options) {
+    StreamingModeDetector detector = new 
StreamingModeDetector(options.isStreaming());
     pipeline.traverseTopologically(detector);
-    if (detector.getTranslationMode().equals(TranslationMode.STREAMING)) {
-      options.setStreaming(true);
+    options.setStreaming(detector.streaming);
+  }
+
+  /** Returns a {@link TransformTranslator} for the given {@link PTransform} 
if known. */
+  protected abstract @Nullable <
+          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
+      TransformTranslator<InT, OutT, TransformT> 
getTransformTranslator(TransformT transform);
+
+  /**
+   * Translates a Beam pipeline into its Spark correspondence using the Spark 
SQL / Dataset API.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted to be able to continue with the translation.
+   *
+   * @return The result of the translation is an {@link EvaluationContext} 
that can trigger the
+   *     evaluation of the Spark pipeline.
+   */
+  public EvaluationContext translate(
+      Pipeline pipeline, SparkSession session, SparkCommonPipelineOptions 
options) {
+    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
+    DependencyVisitor dependencies = new DependencyVisitor();
+    pipeline.traverseTopologically(dependencies);
+
+    TranslatingVisitor translator = new TranslatingVisitor(session, options, 
dependencies.results);
+    pipeline.traverseTopologically(translator);
+
+    return new EvaluationContext(translator.leaves, session);
+  }
+
+  /**
+   * The correspondence of a {@link PCollection} as result of translating a 
{@link PTransform}
+   * including additional metadata (such as name and dependents).
+   */
+  private static final class TranslationResult<T> implements 
EvaluationContext.NamedDataset<T> {
+    private final String name;
+    private @Nullable Dataset<WindowedValue<T>> dataset = null;
+    private final Set<PTransform<?, ?>> dependentTransforms = new HashSet<>();
+
+    private TranslationResult(PCollection<?> pCol) {
+      this.name = pCol.getName();
+    }
+
+    @Override
+    public String name() {
+      return name;
+    }
+
+    @Override
+    public @Nullable Dataset<WindowedValue<T>> dataset() {
+      return dataset;
     }
   }
 
-  /** The translation mode of the Beam Pipeline. */
-  private enum TranslationMode {
+  /** Shared, mutable state during the translation of a pipeline and omitted 
afterwards. */
+  interface TranslationState extends EncoderProvider {
+    <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> pCollection);
+
+    <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache);
 
-    /** Uses the batch mode. */
-    BATCH,
+    default <T> void putDataset(PCollection<T> pCollection, 
Dataset<WindowedValue<T>> dataset) {
+      putDataset(pCollection, dataset, false);
+    }
 
-    /** Uses the streaming mode. */
-    STREAMING
+    SerializablePipelineOptions getSerializableOptions();
+
+    SparkSession getSparkSession();
   }
 
-  /** Traverses the Pipeline to determine the {@link TranslationMode} for this 
pipeline. */
-  private static class TranslationModeDetector extends 
Pipeline.PipelineVisitor.Defaults {
-    private static final Logger LOG = 
LoggerFactory.getLogger(TranslationModeDetector.class);
+  /**
+   * {@link PTransformVisitor} that translates supported {@link PTransform 
PTransforms} into their
+   * Spark correspondence.
+   *
+   * <p>Note, in some cases this involves the early evaluation of some parts 
of the pipeline. For
+   * example, in order to use a side-input {@link 
org.apache.beam.sdk.values.PCollectionView
+   * PCollectionView} in a translation the corresponding Spark {@link
+   * org.apache.beam.runners.spark.translation.Dataset Dataset} might have to 
be collected and
+   * broadcasted.
+   */
+  private class TranslatingVisitor extends PTransformVisitor implements 
TranslationState {
+    private final Map<PCollection<?>, TranslationResult<?>> translationResults;
+    private final Map<Coder<?>, ExpressionEncoder<?>> encoders;
+    private final SparkSession sparkSession;
+    private final SerializablePipelineOptions serializableOptions;
+    private final StorageLevel storageLevel;
+
+    private final Set<TranslationResult<?>> leaves;
+
+    public TranslatingVisitor(
+        SparkSession sparkSession,
+        SparkCommonPipelineOptions options,
+        Map<PCollection<?>, TranslationResult<?>> translationResults) {
+      this.sparkSession = sparkSession;
+      this.translationResults = translationResults;
+      this.serializableOptions = new SerializablePipelineOptions(options);
+      this.storageLevel = StorageLevel.fromString(options.getStorageLevel());
+      this.encoders = new HashMap<>();
+      this.leaves = new HashSet<>();
+    }
 
-    private TranslationMode translationMode;
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+
+      AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
+          (AppliedPTransform) node.toAppliedPTransform(getPipeline());
+      try {
+        LOG.info(
+            "Translating {}: {}",
+            node.isCompositeNode() ? "composite" : "primitive",
+            node.getFullName());
+        translator.translate(transform, appliedTransform, this);
+      } catch (IOException e) {
+        throw new RuntimeException(e);
+      }
+    }
 
-    TranslationModeDetector(TranslationMode defaultMode) {
-      this.translationMode = defaultMode;
+    @Override
+    public <T> Encoder<T> encoderOf(Coder<T> coder, Factory<T> factory) {
+      return (Encoder<T>) encoders.computeIfAbsent(coder, (Factory) factory);
     }
 
-    TranslationModeDetector() {
-      this(TranslationMode.BATCH);
+    private <T> TranslationResult<T> getResult(PCollection<T> pCollection) {
+      return (TranslationResult<T>) 
checkStateNotNull(translationResults.get(pCollection));
     }
 
-    TranslationMode getTranslationMode() {
-      return translationMode;
+    @Override
+    public <T> Dataset<WindowedValue<T>> getDataset(PCollection<T> 
pCollection) {
+      return checkStateNotNull(getResult(pCollection).dataset);
     }
 
     @Override
-    public void visitValue(PValue value, TransformHierarchy.Node producer) {
-      if (translationMode.equals(TranslationMode.BATCH)) {
-        if (value instanceof PCollection
-            && ((PCollection) value).isBounded() == 
PCollection.IsBounded.UNBOUNDED) {
-          LOG.info(
-              "Found unbounded PCollection {}. Switching to streaming 
execution.", value.getName());
-          translationMode = TranslationMode.STREAMING;
+    public <T> void putDataset(
+        PCollection<T> pCollection, Dataset<WindowedValue<T>> dataset, boolean 
noCache) {
+      TranslationResult<T> result = getResult(pCollection);
+      if (!noCache && result.dependentTransforms.size() > 1) {
+        LOG.info("Dataset {} will be cached.", result.name);
+        result.dataset = dataset.persist(storageLevel); // use NONE to disable
+      } else {
+        result.dataset = dataset;
+        if (result.dependentTransforms.isEmpty()) {
+          leaves.add(result);
         }
       }
     }
-  }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline utility methods
-  // 
--------------------------------------------------------------------------------------------
+    @Override
+    public SerializablePipelineOptions getSerializableOptions() {
+      return serializableOptions;
+    }
 
-  /** Get a {@link TransformTranslator} for the given {@link 
TransformHierarchy.Node}. */
-  protected abstract @Nullable <
-          InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      TransformTranslator<InT, OutT, TransformT> getTransformTranslator(
-          @Nullable TransformT transform);
-
-  /** Apply the given TransformTranslator to the given node. */
-  private <InT extends PInput, OutT extends POutput, TransformT extends 
PTransform<InT, OutT>>
-      void applyTransformTranslator(
-          TransformHierarchy.Node node,
-          TransformT transform,
-          TransformTranslator<InT, OutT, TransformT> transformTranslator) {
-    // create the applied PTransform on the translationContext
-    AppliedPTransform<InT, OutT, PTransform<InT, OutT>> appliedTransform =
-        (AppliedPTransform) node.toAppliedPTransform(getPipeline());
-    try {
-      transformTranslator.translate(transform, appliedTransform, 
translationContext);
-    } catch (IOException e) {
-      throw new RuntimeException(e);
+    @Override
+    public SparkSession getSparkSession() {
+      return sparkSession;
     }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline visitor entry point
-  // 
--------------------------------------------------------------------------------------------
-
   /**
-   * Translates the pipeline by passing this class as a visitor.
+   * {@link PTransformVisitor} that analyses dependencies of supported {@link 
PTransform
+   * PTransforms} to help identify cache candidates.
    *
-   * @param pipeline The pipeline to be translated
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
    */
-  public void translate(Pipeline pipeline) {
-    LOG.debug("starting translation of the pipeline using {}", 
getClass().getName());
-    pipeline.traverseTopologically(this);
+  private class DependencyVisitor extends PTransformVisitor {
+    private final Map<PCollection<?>, TranslationResult<?>> results = new 
HashMap<>();
+
+    @Override
+    <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator) {
+      for (PCollection<?> pOut : node.getOutputs().values()) {
+        results.put(pOut, new TranslationResult<>(pOut));
+        for (Map.Entry<TupleTag<?>, PCollection<?>> entry : 
node.getInputs().entrySet()) {
+          TranslationResult<?> input = 
checkStateNotNull(results.get(entry.getValue()));
+          input.dependentTransforms.add(transform);
+        }
+      }
+    }
   }
 
-  // 
--------------------------------------------------------------------------------------------
-  //  Pipeline Visitor Methods
-  // 
--------------------------------------------------------------------------------------------
+  /**
+   * An abstract {@link PipelineVisitor} that visits all translatable {@link 
PTransform} pipeline
+   * nodes of a pipeline with the respective {@link TransformTranslator}.
+   *
+   * <p>The visitor may throw if a {@link PTransform} is observed that uses 
unsupported features.
+   */
+  private abstract class PTransformVisitor extends PipelineVisitor.Defaults {
 
-  @Override
-  public CompositeBehavior enterCompositeTransform(TransformHierarchy.Node 
node) {
-    PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
-    TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
transformTranslator =
-        getTransformTranslator(transform);
+    /** Visit the {@link PTransform} with its respective {@link 
TransformTranslator}. */
+    abstract <InT extends PInput, OutT extends POutput> void visit(
+        Node node,
+        PTransform<InT, OutT> transform,
+        TransformTranslator<InT, OutT, PTransform<InT, OutT>> translator);
 
-    if (transformTranslator != null) {
-      LOG.info("Translating composite: {}", node.getFullName());
-      applyTransformTranslator(node, transform, transformTranslator);
-      return CompositeBehavior.DO_NOT_ENTER_TRANSFORM;
-    } else {
-      return CompositeBehavior.ENTER_TRANSFORM;
+    @Override
+    public final CompositeBehavior enterCompositeTransform(Node node) {
+      PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
+      TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
translator =
+          getTranslator(transform);
+      if (transform != null && translator != null) {
+        visit(node, transform, translator);
+        return DO_NOT_ENTER_TRANSFORM;
+      } else {
+        return ENTER_TRANSFORM;
+      }
+    }
+
+    @Override
+    public final void visitPrimitiveTransform(Node node) {
+      PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
+      if (transform == null || 
transform.getClass().equals(View.CreatePCollectionView.class)) {
+        return; // ignore, nothing to be translated here
+      }
+      TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
translator =
+          getTranslator(transform);
+      if (translator == null) {
+        String urn = PTransformTranslation.urnForTransform(transform);
+        throw new UnsupportedOperationException("Transform " + urn + " is not 
supported.");
+      }
+      visit(node, transform, translator);
     }
-  }
 
-  @Override
-  public void visitPrimitiveTransform(TransformHierarchy.Node node) {
-    LOG.info("Translating primitive: {}", node.getFullName());
-    // get the transformation corresponding to the node we are
-    // currently visiting and translate it into its Spark alternative.
-    PTransform<PInput, POutput> transform = (PTransform<PInput, POutput>) 
node.getTransform();
-    TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
transformTranslator =
-        getTransformTranslator(transform);
-
-    if (transformTranslator == null) {
-      String transformUrn = 
PTransformTranslation.urnForTransform(node.getTransform());
-      throw new UnsupportedOperationException(
-          "The transform " + transformUrn + " is currently not supported.");
-    }
-    applyTransformTranslator(node, transform, transformTranslator);
+    /** {@link TransformTranslator} for {@link PTransform} if translation is 
known and supported. */
+    private @Nullable TransformTranslator<PInput, POutput, PTransform<PInput, 
POutput>>
+        getTranslator(@Nullable PTransform<PInput, POutput> transform) {
+      if (transform == null) {
+        return null;
+      }
+      TransformTranslator<PInput, POutput, PTransform<PInput, POutput>> 
translator =
+          getTransformTranslator(transform);
+      return translator != null && translator.canTranslate(transform) ? 
translator : null;
+    }
   }
 
-  public TranslationContext getTranslationContext() {
-    return translationContext;
+  /**
+   * Traverse the pipeline to check for unbounded {@link PCollection 
PCollections} that would
+   * require streaming mode unless streaming mode is already enabled.
+   */
+  private static class StreamingModeDetector extends PipelineVisitor.Defaults {
+    private boolean streaming;
+
+    StreamingModeDetector(boolean streaming) {
+      this.streaming = streaming;
+    }
+
+    @Override
+    public CompositeBehavior enterCompositeTransform(Node node) {
+      return streaming ? DO_NOT_ENTER_TRANSFORM : ENTER_TRANSFORM; // stop if 
in streaming mode

Review Comment:
   good improvement to stop traversing the hierarchy if the streaming mode is 
already forced !



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to