damccorm commented on code in PR #26472:
URL: https://github.com/apache/beam/pull/26472#discussion_r1180544965


##########
examples/notebooks/beam-ml/run_inference_tensorflow.ipynb:
##########
@@ -101,20 +110,44 @@
         "To use RunInference with the built-in Tensorflow model handler, 
install Apache Beam version 2.46.0 or later."
       ],
       "metadata": {
-        "id": "gVCtGOKTHMm4"
+        "id": "YDHPlMjZRuY0"
       }
     },
     {
       "cell_type": "code",
       "metadata": {
-        "id": "jBakpNZnAhqk"
+        "id": "jBakpNZnAhqk",
+        "colab": {
+          "base_uri": "https://localhost:8080/";
+        },
+        "outputId": "375cd47b-b837-4091-88e2-cdac12e3a4a1"
       },
       "source": [
         "!pip install protobuf --quiet\n",
         "!pip install apache_beam==2.46.0 --quiet"
       ],
-      "execution_count": null,
-      "outputs": []
+      "execution_count": 1,
+      "outputs": [
+        {
+          "output_type": "stream",
+          "name": "stdout",
+          "text": [
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.2/14.2 
MB\u001b[0m \u001b[31m24.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.0/152.0 
kB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25h  Preparing metadata (setup.py) ... 
\u001b[?25l\u001b[?25hdone\n",
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m 
\u001b[32m135.6/135.6 kB\u001b[0m \u001b[31m2.8 MB/s\u001b[0m eta 
\u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7 
MB\u001b[0m \u001b[31m51.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m516.2/516.2 
kB\u001b[0m \u001b[31m14.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6 
MB\u001b[0m \u001b[31m53.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[2K     
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.7/89.7 
kB\u001b[0m \u001b[31m5.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+            "\u001b[?25h  Preparing metadata (setup.py) ... 
\u001b[?25l\u001b[?25hdone\n",
+            "  Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
+            "  Building wheel for crcmod (setup.py) ... 
\u001b[?25l\u001b[?25hdone\n",
+            "  Building wheel for dill (setup.py) ... 
\u001b[?25l\u001b[?25hdone\n",
+            "  Building wheel for docopt (setup.py) ... 
\u001b[?25l\u001b[?25hdone\n"
+          ]
+        }
+      ]

Review Comment:
   ```suggestion
         "execution_count": null,
         "outputs": []
   ```
   
   Lets drop this output for the sake of a cleaner notebook



##########
examples/notebooks/beam-ml/run_inference_tensorflow.ipynb:
##########
@@ -313,14 +350,34 @@
       "metadata": {
         "id": "2JbE7WkGcAkK"
       },
-      "execution_count": 8,
+      "execution_count": 18,
+      "outputs": []
+    },
+    {
+      "cell_type": "markdown",
+      "source": [
+        "Save the weights."

Review Comment:
   Maybe something along the lines of: `Instead of saving the model, you can 
also save/load a model using just the model weights and class. This is a 
smaller, more efficient way to represent your model.`
   
   Basically, I want something to justify to the user why we're having them 
save things 2 ways so they know that in reality they just have to pick one.



-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to