damccorm commented on code in PR #27034:
URL: https://github.com/apache/beam/pull/27034#discussion_r1243868650
##########
examples/notebooks/beam-ml/image_processing_beam.ipynb:
##########
@@ -0,0 +1,933 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "source": [
+ "# @title ###### Licensed to the Apache Software Foundation (ASF),
Version 2.0 (the \"License\")\n",
+ "\n",
+ "# Licensed to the Apache Software Foundation (ASF) under one\n",
+ "# or more contributor license agreements. See the NOTICE file\n",
+ "# distributed with this work for additional information\n",
+ "# regarding copyright ownership. The ASF licenses this file\n",
+ "# to you under the Apache License, Version 2.0 (the\n",
+ "# \"License\"); you may not use this file except in compliance\n",
+ "# with the License. You may obtain a copy of the License at\n",
+ "#\n",
+ "# http://www.apache.org/licenses/LICENSE-2.0\n",
+ "#\n",
+ "# Unless required by applicable law or agreed to in writing,\n",
+ "# software distributed under the License is distributed on an\n",
+ "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
+ "# KIND, either express or implied. See the License for the\n",
+ "# specific language governing permissions and limitations\n",
+ "# under the License"
+ ],
+ "metadata": {
+ "id": "NsNImDL8TGM1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Image Processing using Apache Beam\n",
Review Comment:
Could you please add colab/github links like our other notebooks, for
example:
https://github.com/apache/beam/blob/c2de3391bce1165e0e835b1475cfb254382cdad0/examples/notebooks/beam-ml/automatic_model_refresh.ipynb#L52
<img width="526" alt="image"
src="https://github.com/apache/beam/assets/42773683/ec9a9ad5-b40f-49f1-927a-df0b27059228">
Note that the links should go to apache/beam master's version of these on
colab/github even though those links won't exist until the PR is merged
##########
examples/notebooks/beam-ml/image_processing_beam.ipynb:
##########
@@ -0,0 +1,933 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "source": [
+ "# @title ###### Licensed to the Apache Software Foundation (ASF),
Version 2.0 (the \"License\")\n",
+ "\n",
+ "# Licensed to the Apache Software Foundation (ASF) under one\n",
+ "# or more contributor license agreements. See the NOTICE file\n",
+ "# distributed with this work for additional information\n",
+ "# regarding copyright ownership. The ASF licenses this file\n",
+ "# to you under the Apache License, Version 2.0 (the\n",
+ "# \"License\"); you may not use this file except in compliance\n",
+ "# with the License. You may obtain a copy of the License at\n",
+ "#\n",
+ "# http://www.apache.org/licenses/LICENSE-2.0\n",
+ "#\n",
+ "# Unless required by applicable law or agreed to in writing,\n",
+ "# software distributed under the License is distributed on an\n",
+ "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
+ "# KIND, either express or implied. See the License for the\n",
+ "# specific language governing permissions and limitations\n",
+ "# under the License"
+ ],
+ "metadata": {
+ "id": "NsNImDL8TGM1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Image Processing using Apache Beam\n",
+ "Image Processing is a machine learning technique to read, analyze and
extract meaningful information from images. It involves multiple steps such as
applying various preprocessing fuctions, getting predictions from a model,
storing the predictions in a useful format, etc. Apache Beam is a suitable tool
to handle these tasks and build a structured workflow. This notebook
demonstrates the use of Apache Beam in image processing and performs the
following:\n",
+ "* Import and preprocess the CIFAR-10 dataset\n",
+ "* Train a TensorFlow model to classify images\n",
+ "* Store the model in Google Cloud and create a model handler\n",
+ "* Build a Beam pipeline to:\n",
+ " 1. Create a
[PCollection]('https://beam.apache.org/documentation/programming-guide/#pcollections')
of input images\n",
+ " 2. Perform preprocessing
[transforms]('https://beam.apache.org/documentation/programming-guide/#transforms')\n",
+ " 3. RunInference to get predictions from the previously trained
model\n",
+ " 4. Store the results\n",
+ "\n",
+ "For more information on using Apache Beam for machine learning, have
a look at [AI/ML Pipelines using
Beam]('https://beam.apache.org/documentation/ml/overview/')."
+ ],
+ "metadata": {
+ "id": "SwN0Rj4cJSg5"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OSZrRmHl9NQY"
+ },
+ "source": [
+ "## Installing Apache Beam"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "MO7iNmvkBdA5",
+ "outputId": "6c76e29d-3c70-4c3e-aca2-7cc1dcd167a1"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.3/14.3
MB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.7/89.7
kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.0/137.0
kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.0/152.0
kB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6
MB\u001b[0m \u001b[31m44.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m648.9/648.9
kB\u001b[0m \u001b[31m46.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7
MB\u001b[0m \u001b[31m84.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.7/283.7
kB\u001b[0m \u001b[31m27.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Building wheel for crcmod (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ " Building wheel for dill (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ " Building wheel for docopt (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m
\u001b[32m307.5/307.5 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta
\u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.8/152.8
kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.3/138.3
kB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m798.7/798.7
kB\u001b[0m \u001b[31m24.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6
MB\u001b[0m \u001b[31m46.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1
MB\u001b[0m \u001b[31m60.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Building wheel for timeloop (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[31mERROR: pip's dependency resolver does not currently
take into account all the packages that are installed. This behaviour is the
source of the following dependency conflicts.\n",
+ "google-colab 1.0.0 requires ipykernel==5.5.6, but you have
ipykernel 6.23.2 which is incompatible.\n",
+ "google-colab 1.0.0 requires ipython==7.34.0, but you have ipython
8.14.0 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0m"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install apache_beam --quiet\n",
+ "!pip install apache-beam[interactive] --quiet"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "45mf7oHu9XbI"
+ },
+ "source": [
+ "## Importing necessary libraries\n",
+ "Here is a brief overview of the uses of each library imported:\n",
+ "* **NumPy**: Multidimensional numpy arrays are used to store images,
and the library also allows performing various operations on them.\n",
+ "* **Matplotlib**: Displays images stored in numpy array format.\n",
+ "* **TensorFlow**: Trains a machine learning model.\n",
+ "* **TFModelHandlerNumpy**: Defines the configuration used to load/use
the model that we train. We use `TFModelHandlerNumpy` because the model was
trained with TensorFlow and takes numpy arrays as input.\n",
+ "* **RunInference**: Loads the model and obtains predictions as part
of the Apache Beam pipeline. For more information, see [docs on prediction and
inference](https://beam.apache.org/documentation/ml/inference-overview/).\n",
+ "* **Apache Beam**: Builds a pipeline for Image Processing."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "z5_PUeZgOygU"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import tensorflow as tf\n",
+ "from apache_beam.ml.inference.tensorflow_inference import
TFModelHandlerNumpy\n",
+ "from apache_beam.ml.inference.base import RunInference\n",
+ "import apache_beam as beam"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "x3tSAqP7R2rZ"
+ },
+ "source": [
+ "## CIFAR-10 Dataset\n",
+ "CIFAR-10 is a popular dataset used for multiclass object
classification.\n",
+ "It has 60,000 images of the following 10 categories:\n",
+ "\n",
+ "* airplane\n",
+ "* automobile\n",
+ "* bird\n",
+ "* cat\n",
+ "* deer\n",
+ "* dog\n",
+ "* frog\n",
+ "* horse\n",
+ "* ship\n",
+ "* truck\n",
+ "\n",
+ "The dataset can be directly imported from the TensorFlow library."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "MqylmjBhPCOW",
+ "outputId": "9d9f5854-80f2-4a4f-a52b-2b81d6295639"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Downloading data from
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n",
+ "170498071/170498071 [==============================] - 4s
0us/step\n"
+ ]
+ }
+ ],
+ "source": [
+ "(x_train, y_train), (x_test, y_test) =
tf.keras.datasets.cifar10.load_data()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "x_test.shape"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "pfzkgryZUV8P",
+ "outputId": "79bc798f-f93b-4d7b-8783-c5defa6a2322"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(10000, 32, 32, 3)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The labels in y_train and y_test are numeric, with each number
representing a class. The labels list defined below contains the various
classes, and their positions in the list represent the corresponding number
used to refer to them."
+ ],
+ "metadata": {
+ "id": "6hEHIHPsVxw4"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3uImFIBXv0My"
+ },
+ "outputs": [],
+ "source": [
+ "labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog',
'Frog', 'Horse','Ship', 'Truck']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 447
+ },
+ "id": "zeE81PNOcGfZ",
+ "outputId": "d2a08cb5-4fdc-47af-c2b2-5602e7600f09"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "<matplotlib.image.AxesImage at 0x7f441be49840>"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 6
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "<Figure size 640x480 with 1 Axes>"
+ ],
+ "image/png":
"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvsklEQVR4nO3df3Bc5Xn3/8/Z1e5KsqSVZVuShWVjG2Pzy85TBxwNCSXYxXanDARPB5LM1KR8YaAyU3DTJO4kEGg7SslMQpJxzB+luHkmhoQ+MQx8GyiYWDStTWsHPw5QHOwYbGJLBtv6rf2hPff3D76oFdhwX7bk2xLv18zOWNrLl+5zzu5eOtrdz0bOOScAAM6wROgFAAA+nhhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgykIv4P3iONahQ4dUXV2tKIpCLwcAYOScU29vr5qampRInPw856wbQIcOHVJzc3PoZQAATtPBgwc1Y8aMk14/ZgNo/fr1+va3v62Ojg4tWrRIP/jBD3TZZZd95P+rrq6WJP3R//NHSqVTXj+r+UL/gRWXFb1rJSlpOAlLRra/aCaU9K6NPuS3iBP2Npw9WrOYnItN9aXYv75kXExs+A+leMjU27JuOdvxcbKd3VsSs1xs24mx4Xhak7uGTMfetg+T6bR3bWVVjal3ZXayqT5K+B/PQq7X1Hugu8u7tpQrmHonDIfT8hBUyBX0v//q4eHH85MZkwH0k5/8RGvXrtWDDz6oJUuW6IEHHtDy5cu1Z88e1dfXf+j/fe/Pbql0SqmM3wDKVGS81xaXGW/kYzmAIgbQB2tta7ENIP/9/W59ybvWOVvvsR1Atp04lgMoMaYDyP9+n6ksN/XOVFaY6iPDA0WUsP0SPFTw386S8VkL2wCyPyXyUU+jjMmLEL7zne/olltu0Ze+9CVdeOGFevDBB1VZWal/+Id/GIsfBwA
Yh0Z9ABUKBe3cuVPLli377x+SSGjZsmXatm3bB+rz+bx6enpGXAAAE9+oD6B33nlHpVJJDQ0NI77f0NCgjo6OD9S3tbUpm80OX3gBAgB8PAR/H9C6devU3d09fDl48GDoJQEAzoBRfxHC1KlTlUwm1dnZOeL7nZ2damxs/EB9JpNRJuP/JBsAYGIY9TOgdDqtxYsXa8uWLcPfi+NYW7ZsUUtLy2j/OADAODUmL8Neu3atVq9erU9+8pO67LLL9MADD6i/v19f+tKXxuLHAQDGoTEZQDfccIPefvtt3X333ero6NAnPvEJPf300x94YQIA4ONrzJIQ1qxZozVr1pzy/y8NlT40Q+h/coY3uEcJ2yYnk/5/pUw4vzfOvseV/HsX8rY3rxUM74hOGP8Sm0zb3nSZKPd/x3osW1pBXPLfTssbLiXJ8p5L6xs0rW//jQz1LjL2trzJVbZ9mLDUO/83/kpSPOh/7PtyA6beg319pvrKyXXeteWTKk29s9P87z8547oHe/1TGUpD/vdN3/eHB38VHADg44kBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACGLMonhOl4uScgm/yBdX8t+Mw7/94IfifWjvgn9MSUV5jan3gTcPedfu+81vTb0tHw4/KV1laj15StZUf+78Gd6155w7xdQ79k8pUUmDpt4f8XH2I2tNnU+F/09IGFcTG9JyEiVbDFNsiBAqyRbFEyWt8Uf+XN4/okaSBo75R2UVS7bbeHlFtX9t5WRT70Tk/1E4+XzOuzZO5P1+vndHAABGEQMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEWZsFN1jIa0h+IVXd/V3efTve9s9fk6RCj38+VZyvMPU+bMiCSydsuVfHjh71ru2LbblXcdGWNdbxu1951y78xAJT7zkXNXvXpqptv2/lXJ93bTJh
CFSTpMiWqSbnv/aEIX9NkspMeW22Yz9kKffMfhzm/Pd5bAm8k6SE7bZi6Z/r9b9dSdJQzr93WcL4kB4Zjr2hdykx5FXHGRAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIizNoqnPJ1SKpPyq53kP0cv+l/zbOtIVnvXZsvPNfV+8zeHvWtf3bXT1HvmzJnetVXV5abe6cwkU/1rr77hX/t/99rWkkh7157/ybm23qmMd21B/abepcgvquQ9LvKPhIpiW1xOQv4ROHFki7RJGJaScLZ1m3J+jL1LxqXIEGeUGMrbOg/5H/uSMc7IlfnXl1X43x+SnrcTzoAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQZy1WXDOleRiv/kYGXKeXOSf2SRJQ27Qu7arcMDUu35eo3dt7+AnTL3f3LPfu/bYgU5T74F+W15beabKuzY3YMtUe3nnr71rB3r7TL1nzZ/lXVvXPM3Uu5jqMdXnXJd3rUvafq+M5Z+nZ7z7KCH/HDNn7F2W8t/OMkPm2btrsWXeWbLgJGNvVzQU2zIGS85/HyYNj7NJzzVzBgQACGLUB9A3v/lNRVE04rJgwYLR/jEAgHFuTP4Ed9FFF+m555777x9Sdtb+pQ8AEMiYTIaysjI1Nvo/vwEA+PgZk+eAXn/9dTU1NWnOnDn64he/qAMHTv7kfD6fV09Pz4gLAGDiG/UBtGTJEm3cuFFPP/20NmzYoP379+szn/mMent7T1jf1tambDY7fGlubh7tJQEAzkKjPoBWrlypP/7jP9bChQu1fPly/fM//7O6urr005/+9IT169atU3d39/Dl4MGDo70kAMBZaMxfHVBbW6vzzz9fe/ee+L0jmUxGmYz/Z40DACaGMX8fUF9fn/bt26fp06eP9Y8CAIwjoz6AvvzlL6u9vV1vvPGG/
v3f/12f+9znlEwm9fnPf360fxQAYBwb9T/BvfXWW/r85z+vo0ePatq0afr0pz+t7du3a9o0W1RJvr+gUtEv3mLIkD6RMMR3SFIp8o/NKLmjtt5D/r3PmTPT1Hugxz8C5a3X/eOGJCkeskXaxMm8d+3AoO1VkN1d/vv8+DHb8el8yz+i6LwL5pl6z77kHFN9de1U79r+0olf8HMyLvK/rcSG+4Nk+w03NibURJF/NIxZbO09hmsxxfwY84wM9UM5/8eJobzffX7UB9Cjjz462i0BABMQWXAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCDG/OMYTlUhFysueWZUFVL+jY1bHCf9g+aSyaStufPP4Kqqti18cl2Nd23fZP9aSaqfYtvOQt4/m6z7+DFT79xgv3ftQM4WNvbmmyf/JN/3O9Lxtql3Z+f5pvrFV3zCu7aqvs7Uu6/kv3brb6xx5P8/ooQtx8xSHTlbVptLGrfU0D+y5rVF1nw3fwlD5p2L/fdJwrOWMyAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBBnbxTPYFHxkF8ERfOUud59Z82bZVrHnjde9q493n/E1LuU8I+RKUVHTb2nTpvsXdv39jRT79KQLdaksmqSd+1FmUpT79/u2eNdWyzaonhyQ/5RSf1D/sdSkt7Y96apPpnwjz9a+JkFpt5lk/2PTykaNPW2/Ioby3Z8IucfUZMw1EoyReu8uxhj/RiJnG0fWrjI//6Q8KzlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVcs5RQn/Jb3q50vefd1LmNax/xzL/OuLSb6TL33/s5/3YMDx029yyr8t7Oq1j8LTJJ6evwzoSSpp7/XuzabbTD1Pv+Scu/awwd/a+ptif
fq6R4w9Y6LRVN9X5f/8X/7zbdNvWeUN3rXugrbukuJvHdtQra8Nkv6WtL5Z+lJkotsmWq2eltunDPUO2c7pygZdvmQ4XxlKPKr5QwIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZmwVXXTtJZWm/5cWZQe++z/3r/2taR/pf/XPS5s+7wNR77oK53rX5clvW2PHj/hlcqeoqU+/qshpTfVH+2WTHertMvcucfxacS9vWPZTr966tqKg29Y4qTeXKFfyP/zuH3jH1rs1O9q7Nzsmaepfibu9al7DlzEmG/DVLsJ8kyZgdl/DvHxtz6WLDw3RsXHexzL930bCOwlDOq44zIABAEOYB9MILL+iaa65RU1OToijS448/PuJ655zuvvtuTZ8+XRUVFVq2bJlef/310VovAGCCMA+g/v5+LVq0SOvXrz/h9ffff7++//3v68EHH9SLL76oSZMmafny5crl/E7JAAAfD+bngFauXKmVK1ee8DrnnB544AF9/etf17XXXitJ+tGPfqSGhgY9/vjjuvHGG09vtQCACWNUnwPav3+/Ojo6tGzZsuHvZbNZLVmyRNu2bTvh/8nn8+rp6RlxAQBMfKM6gDo6OiRJDQ0jP9WyoaFh+Lr3a2trUzabHb40NzeP5pIAAGep4K+CW7dunbq7u4cvBw8eDL0kAMAZMKoDqLHx3c+W7+zsHPH9zs7O4eveL5PJqKamZsQFADDxjeoAmj17thobG7Vly5bh7/X09OjFF19US0vLaP4oAMA4Z34VXF9fn/bu3Tv89f79+7Vr1y7V1dVp5syZuvPOO/U3f/M3mjdvnmbPnq1vfOMbampq0nXXXTea6wYAjHPmAbRjxw599rOfHf567dq1kqTVq1dr48aN+spXvqL+/n7deuut6urq0qc//Wk9/fTTKi/3j0yRpKpshVLplFdt42z/eJD62bbIlJ6j/nE
su17+V1Pv1/b8X+/azyy7ytT7/S8E+TCDuSOm3oP+6SqSpGmJE//59URSqQrbWgb6vGur6/xuT+/J93V51yZdwdS7ttY/4kmSBgb9Xx06OOgfTSVJv3vjkHdttv4iU+9s1n+f95T8I5skKU6W/GuNETUlZ7utlAzxOiXjWoZi/4fpfMF/n0hSPucf2VUs+N/xi559zQPoyiuvlHPupNdHUaT77rtP9913n7U1AOBjJPir4AAAH08MIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBDmKJ4zJY5ixVHsVVtyfnWSVJY8eYzQiUxp9M+Zy2b9ayXpzd8c8K594mebTL0vv3y5d+3c+bZ8rzfefMdUPzRkOD5pW2agG8h5107K1pt6T67zz9NzcdHUu7am0lTvSgPetQN9tky1/GCvd+3RN4+bep970TnetbmEf+6iJPUb9slQyZa/VixFpvo48q8vxLa8tv4+/wy2Qt6WAxgl/NddljLk4yX8tpEzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdtFE8yVaZk2m95lnAdV7JF8ZTckH9x2jbPZ1/oH/WilH8chyT92/b/4107ONBn6n3e/EtN9cWif3xLT58h7kNS/fTzvGtzg7btrKz0X0sist2VypK2qJekCv69M1Wm3sWC/22re9AWl3Po8FHv2swUWzxRvugfw1RK+u8/SVKZLbrHJQ2329h27Ctq/fdLbbra1DuT8Y++Sjj/fZL3jMjiDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVdeVaFUxi9fyUWxd1/n/GslyZLaVJIhN06SUkXv0lkX1JhaZyb1eNdu277Z1Pvw7zpM9Rf9ryXetVVZWxZcIumfk9XU3GzqnfHMIpSkfMF27Af7
bZlqlRnDLTGuNfUuFf2z4Hr7bce+q2fQu3ZyusLUu7au3ru2P+mfRyhJiUr/jDRJSqb8M9jihO02Hjv/Yx+XbLfDpPN/DIrz/rfZKPbL3uMMCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFkbxZOZVK50edqrNpYhiidypnVEhugeS60kRYmkd20i7V8rSdkG/+1snmfr/dtXdtjWUlPlXdt03gWm3n15/xiZfNF2c0+npnjXRkn/SBNJKgz1murl/I9nRcbWOnYl79rJWf/4G0lS0X+/OGeLkSkv94/uKZTb7vcu7ffYM1wv/50e2x4mFA/578PIUCtJruh/O4wHu/z7Dua96jgDAgAEwQACAARhHkAvvPCCrrnmGjU1NSmKIj3++OMjrr/pppsURdGIy4oVK0ZrvQCACcI8gPr7+7Vo0SKtX7/+pDUrVqzQ4cOHhy+PPPLIaS0SADDxmF+EsHLlSq1cufJDazKZjBobG095UQCAiW9MngPaunWr6uvrNX/+fN1+++06evToSWvz+bx6enpGXAAAE9+oD6AVK1boRz/6kbZs2aK/+7u/U3t7u1auXKlS6cQv9Wxra1M2mx2+NBs/tRIAMD6N+vuAbrzxxuF/X3LJJVq4cKHmzp2rrVu3aunSpR+oX7dundauXTv8dU9PD0MIAD4Gxvxl2HPmzNHUqVO1d+/eE16fyWRUU1Mz4gIAmPjGfAC99dZbOnr0qKZPnz7WPwoAMI6Y/wTX19c34mxm//792rVrl+rq6lRXV6d7771Xq1atUmNjo/bt26evfOUrOu+887R8+fJRXTgAYHwzD6AdO3bos5/97PDX7z1/s3r1am3YsEG7d+/WP/7jP6qrq0tNTU26+uqr9dd//dfKZGwBVcmyhJJlfidozhCu5CLTMgwpc1KUsIU8uZL/CWjNpDmm3jVT/DO7Eql9pt79vYdN9b/a+Qvv2qIrm
HrPPN9/v5QZM9KGSoa7h7M1T5elTPVvdxzwrh3K2V5Jmoz893ldrX+unyTNOn+Wd20ubTv2fSm/vDFJitP+uXGSLV/y3f+Q868dsm1nsjjgX2yplRQV/dcSxf6ZgSXPx2TzALryyivlPiQY8ZlnnrG2BAB8DJEFBwAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIYtQ/D2i0RIl3L1618g94iyJjGJxBHNnyvaKSf95Uf9+gqfc5hvTxSVW2fTI5Y/vIjKNN/jlp+157y9S7PJ30rq2uP27q3Zd707u2snyKqfc7R98x1R87fvJPFX6/qZNta8mkyr1rB8tsWWPdyV7v2qjafx2SpKT//S0y5q8ljPVxwX+/REOG3DhJUcl/Lcm4aOqtD4lVe7+S4bHTt5QzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdvFI/84xxs/KMnhhfi3do2z6OE/1qKBVsUz9Cgf8xP0+SLTL0nT59nqj+3rtK7drBnm6n3b179tXdt9lCjqXcuLnnXNp3vHzckSZOm2Oqz9f7xR9Mb/WOYJKmsrMq7ts/1mHonqv2jkpxsMTJRbsi7dqin39S7zNnub2XOEFHkbDE/kfxvh5ZYMklypnr/xxRfnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjh7s+AS7168OEu+my0Lzjn//KM48s+mMivaflfoO+q/lpde2WPqffxop6k+Ve2fe1ZW6Z8dJkn9vf75YXHhmKl3zbRy79pMyj/vTpKqs/69Jang8t61fTpiW4shry1dljL1LuX9c8/eOWBb9+u/es27dsYUWz7elGmTTPXl1f6PK1GZ7TEoTvo/BjnjOYXpodP02OlXyxkQACAIBhAAIAgGEAAgCAYQACAIBh
AAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACCIszeKxzlFnjkRUcIQg5G0xWCUpfxjSsoythiZhPOf/0OD/nEcktR3zD8u560DtiieeRfOM9Wnsv6xJsfe6jD1rq33jxw6duSoqXeqf4p3ba7XduwzVaZyTZpS411bVWeLkVFZv3dpYdA/EkiScsdy3rVH3zho6v27V/Z518ZZ/22UpNRFc0z1FRXV3rXJtO33/thF3rUu8q+VJEX+j4eJMajlDAgAEIRpALW1tenSSy9VdXW16uvrdd1112nPnpG/PedyObW2tmrKlCmqqqrSqlWr1NlpC68EAEx8pgHU3t6u1tZWbd++Xc8++6yKxaKuvvpq9ff/9+ntXXfdpSeffFKPPfaY2tvbdejQIV1//fWjvnAAwPhmeg7o6aefHvH1xo0bVV9fr507d+qKK65Qd3e3HnroIW3atElXXXWVJOnhhx/WBRdcoO3bt+tTn/rU6K0cADCundZzQN3d3ZKkuro6SdLOnTtVLBa1bNmy4ZoFCxZo5syZ2rZt2wl75PN59fT0jLgAACa+Ux5AcRzrzjvv1OWXX66LL75YktTR0aF0Oq3a2toRtQ0NDeroOPGrm9ra2pTNZocvzc3Np7okAMA4csoDqLW1VS+//LIeffTR01rAunXr1N3dPXw5eND2UkwAwPh0Su8DWrNmjZ566im98MILmjFjxvD3GxsbVSgU1NXVNeIsqLOzU42NjSfslclklMn4f2QzAGBiMJ0BOee0Zs0abd68Wc8//7xmz5494vrFixcrlUppy5Ytw9/bs2ePDhw4oJaWltFZMQBgQjCdAbW2tmrTpk164oknVF1dPfy8TjabVUVFhbLZrG6++WatXbtWdXV1qqmp0R133KGWlhZeAQcAGME0gDZs2CBJuvLKK0d8/+GHH9ZNN90kSfrud7+rRCKhVatWKZ/Pa/ny5frhD384KosFAEwcpgHkPLLZysvLtX79eq1fv/6
UFyVJmaqEMhV+fyGcVFXu3bc6618rSRWVae/ayoztNR0lz6w7Scr12zLs3t57yLt2siGrTZLmnn+BqT5f8M8De+e3r5t6nzuv3ru2GPeaeufz/jlz6Um2p1OzU237fFJdrXdtvmjLDRzsOeZdm+uzZapFQ/73icbGrKl34rJLvGv73/E/lpJUiG2ZagOFQe/ayirb8XGGLDhDXJskKTYsxRmesYk9a8mCAwAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEcUofx3AmzLpwiiqq/D6mobK8wrtv5GwxGPFQybt2qFg09e7uHfCuzfUWTL17ev1jZ6ZOOfFHZZxMearSVP/6a3u9a/v7bPuwqm6ad+30WbYYptf/yz8WyMk/bkiSamtqTfXvHPOPy+nt7TP1jkv+t/FEZNuHqaR/73S1LUdm1nz/GKaBev9ILUkqk+0jYmprkt61/YVOU28lLfvFf39LkpN/79j5j4vYsy1nQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztosOBc7xZ6BQseP9Xj3zedsmWqDA/4ZX4WcLYcpjvzzo+pqaky9U2n/fdLfY8sxe+2V10z173T4Z1+lM7acuVLSfx9m6237cL5metcee+OQqffLfbbcs0nTqr1r48h2G08mUt61kSmXTJLzz/aLE0Om1lEy8q6tnGzLghs8blxL5H+7TZXZbof5obz/Ooz70JX87/tR7H8so5JfLWdAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztoongO/OaZMhV98RrHkH4GTKLNtcjqT8a5NZWzzvLzKfy3lxt654lHv2uqaClPvVHLAVJ8f8I8FylTbYkok/xgZpfxjeyQpO22ad23n4f2m3sd+122qv6R5lndtMmOMY4n8
Y2oSCds+jF3sX2zsbQm+ssQNSVJmUpWpfjBtWHtmiqm3DI9vceQflyNJKhpiuIr+x9JFfvFBnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjhrs+CGhhJKDPnNx4oa/9ymiupy0zrKDPlhUcKWwaWo4F1aGjJkNkmKh/yymCQpU5M19a6u9M/Hk6RyQ56eq5hs6p0on+TfW7asMVdR51077/Lppt65AVueXt+A//EsV6WpdzITedc6SwCbJMX+v+MOyZAbJymKnP8yItvCXZl/b0nq6/K/75cl/bP3JKmyxv945uJBU+/IkKXoEv7rHor8+nIGBAAIwjSA2tradOmll6q6ulr19fW67rrrtGfPnhE1V155paIoGnG57bbbRnXRAIDxzzSA2tvb1draqu3bt+vZZ59VsVjU1Vdfrf7+/hF1t9xyiw4fPjx8uf/++0d10QCA8c/0HNDTTz894uuNGzeqvr5eO3fu1BVXXDH8/crKSjU2No7OCgEAE9JpPQfU3f3uh2rV1Y18svbHP/6xpk6dqosvvljr1q3TwIc84ZrP59XT0zPiAgCY+E75VXBxHOvOO+/U5Zdfrosvvnj4+1/4whc0a9YsNTU1affu3frqV7+qPXv26Gc/+9kJ+7S1tenee+891WUAAMapUx5Ara2tevnll/XLX/5yxPdvvfXW4X9fcsklmj59upYuXap9+/Zp7ty5H+izbt06rV27dvjrnp4eNTc3n+qyAADjxCkNoDVr1uipp57SCy+8oBkzZnxo7ZIlSyRJe/fuPeEAymQyyhjeJwIAmBhMA8g5pzvuuEObN2/W1q1bNXv27I/8P7t27ZIkTZ9ue6MeAGBiMw2g1tZWbdq0SU888YSqq6vV0dEhScpms6qoqNC+ffu0adMm/eEf/qGmTJmi3bt366677tIVV1yhhQsXjskGAADGJ9MA2rBhg6R332z6P
z388MO66aablE6n9dxzz+mBBx5Qf3+/mpubtWrVKn39618ftQUDACYG85/gPkxzc7Pa29tPa0HvqW3IKuOZORZl/DO+UinbK8/Lkv45WaW8LW+qUPDPgitL2tY9VPKvP3LU9tL3dNo/e0+S6qb5Z6r1GPa3JE2q9N/nccl2fI539XnXppO25zHf/u2bpvqXtr3iXfvJyy4z9Z49v967dsjZssYSCf/jacl2k6TIcJeIbDcrJRL+GWmSlO/0vy8X4ymm3rMX+b8o68DRI6befSX/jMFi5H+/Lw769SULDgAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxCl/HtBYc8mSXJlfdErsYu++ZTJGbAz4R2z0H+8y9U4YYoHKKipMvVPl/rEZA122eJUjb3eZ6tMV/jez2qx/rJIkNTb475ehgSFT7+Nvd3jX5ou241NTU26qn1TpX18YsB3PdOR/fIrGOKM44X8bN6blKPqIaLD/yZAIJEkaGiqa6uvqpnnX1lbPN/UuK/OPsiqp2tS733CfiOW/v4s5v1rOgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBnLVZcKl0Rul0xqs2MqRIubwty+rYoXe8a6PIPytJkjLpSu/awYItx6yQ919LnLMFZR0bPGaqr23yz6WbUl1j6l2Ie7xrB3P+uX6SlCjzv3vkCrbbVVWtLZNw/kXneNce+d3bpt79Ped616aqbZl3ueKAd23SGthmuL+5yNa7lPDPl5SkoSjnX1y0HZ/Ow8e9a7uKtnXHKf+MwYQhBzCR8KvlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZG8XjiiW5omecQ5T07psu86+VpOnn1HvXRsb4jnzRP77jeEeXqXfPsX7vWtdni/mpqL
bFmlRnp3rXZtJTTL2P9XZ41xbyeVPv8gr/2JlC/6Cpdylh2+d1U/33y5G3/I+9JL21b7937fyF80y9c8Vu79pS0nb/SUZ+UV3/f3dTb5ey/W5eKvOPeep3R229Y/+H6UlJ430zXfSujWP/WKVC5Lc/OAMCAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABHHWZsEdeO2g0uUpr9pkwj/fLZWxZcFlMv7ZStbekyr8tk+SqhL+tZLUNM0/wy6f7jH1jlP+uVeSlJ3qvxYlK029ayY3edeW19v2Yb7bPz/sWOXbpt6DA7bsuGKvf+5Zuef95j0dh970rp1cV2vqPeWcKu/annyXqbcz3N0SkS1nLoqcqT5p2OVRZMsB7Os67l2bssUdqqEp613bG/vfZuOYLDgAwFnMNIA2bNighQsXqqamRjU1NWppadHPf/7z4etzuZxaW1s1ZcoUVVVVadWqVers7Bz1RQMAxj/TAJoxY4a+9a1vaefOndqxY4euuuoqXXvttXrllVckSXfddZeefPJJPfbYY2pvb9ehQ4d0/fXXj8nCAQDjm+k5oGuuuWbE13/7t3+rDRs2aPv27ZoxY4Yeeughbdq0SVdddZUk6eGHH9YFF1yg7du361Of+tTorRoAMO6d8nNApVJJjz76qPr7+9XS0qKdO3eqWCxq2bJlwzULFizQzJkztW3btpP2yefz6unpGXEBAEx85gH061//WlVVVcpkMrrtttu0efNmXXjhhero6FA6nVZtbe2I+oaGBnV0nPxTK9va2pTNZocvzc3N5o0AAIw/5gE0f/587dq1Sy+++KJuv/12rV69Wq+++uopL2DdunXq7u4evhw8ePCUewEAxg/z+4DS6bTOO+88SdLixYv1n//5n/re976nG264QYVCQV1dXSPOgjo7O9XY2HjSfplMRpmM5bPdAQATwWm/DyiOY+XzeS1evFi
pVEpbtmwZvm7Pnj06cOCAWlpaTvfHAAAmGNMZ0Lp167Ry5UrNnDlTvb292rRpk7Zu3apnnnlG2WxWN998s9auXau6ujrV1NTojjvuUEtLC6+AAwB8gGkAHTlyRH/yJ3+iw4cPK5vNauHChXrmmWf0B3/wB5Kk7373u0okElq1apXy+byWL1+uH/7wh6e0sEJPLFfwi8+wnMblk0XTOvoThtgMY8RGddY/v6OpYZqtd5N/pE3HQJep91AmbapXynCEkrYskYT8I1Pyg7Zjn6rwz3ppmlVn6p3rtkXDbHv+V9612aztL+uzzpntXXv4rTdMvatr5nvXZrO2fdiV6/KuLau2xRNFCVsUT6nY6987zpl6Vxsivmqra029yxL+981I/rFkvrWmW+pDDz30odeXl5dr/fr1Wr9+vaUtAOBjiCw4AEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEOY07LHm3LsRGMW8f2xKZJijUdIWgRKNYRRPwZBokxsomHqX5f33ST5ni6gpOdvvLbl+Q7xO0da7JP/j6Yb8o0QkqZT0j0BJGo99bsB2Oyzm/fsPFWxrsdzXhorG23je/3Yb5WzxNwXD7TYqs/W2RvHEhsMZOVvvRNH/dpgv2aKsLPdly7Es5N6tdR+xrZH7qIoz7K233uJD6QBgAjh48KBmzJhx0uvPugEUx7EOHTqk6upqRdF//8ba09Oj5uZmHTx4UDU1NQFXOLbYzonj47CNEts50YzGdjrn1Nvbq6amJiU+JPD0rPsTXCKR+NCJWVNTM6EP/nvYzonj47CNEts50Zzudmaz2Y+s4UUIAIAgGEAAgCDGzQDKZDK65557lMlkQi9lTLGdE8fHYRsltnOiOZPbeda9CAEA8PEwbs6AAAATCwMIABAEAwgAEAQDCAAQxLgZQOvXr9e5556r8vJyLVmyRP/xH/8Rekmj6pvf/KaiKBpxWbBgQehlnZYX
XnhB11xzjZqamhRFkR5//PER1zvndPfdd2v69OmqqKjQsmXL9Prrr4dZ7Gn4qO286aabPnBsV6xYEWaxp6itrU2XXnqpqqurVV9fr+uuu0579uwZUZPL5dTa2qopU6aoqqpKq1atUmdnZ6AVnxqf7bzyyis/cDxvu+22QCs+NRs2bNDChQuH32za0tKin//858PXn6ljOS4G0E9+8hOtXbtW99xzj371q19p0aJFWr58uY4cORJ6aaPqoosu0uHDh4cvv/zlL0Mv6bT09/dr0aJFWr9+/Qmvv//++/X9739fDz74oF588UVNmjRJy5cvVy6XO8MrPT0ftZ2StGLFihHH9pFHHjmDKzx97e3tam1t1fbt2/Xss8+qWCzq6quvVn9//3DNXXfdpSeffFKPPfaY2tvbdejQIV1//fUBV23ns52SdMstt4w4nvfff3+gFZ+aGTNm6Fvf+pZ27typHTt26KqrrtK1116rV155RdIZPJZuHLjssstca2vr8NelUsk1NTW5tra2gKsaXffcc49btGhR6GWMGUlu8+bNw1/HcewaGxvdt7/97eHvdXV1uUwm4x555JEAKxwd799O55xbvXq1u/baa4OsZ6wcOXLESXLt7e3OuXePXSqVco899thwzX/91385SW7btm2hlnna3r+dzjn3+7//++7P//zPwy1qjEyePNn9/d///Rk9lmf9GVChUNDOnTu1bNmy4e8lEgktW7ZM27ZtC7iy0ff666+rqalJc+bM0Re/+EUdOHAg9JLGzP79+9XR0THiuGazWS1ZsmTCHVdJ2rp1q+rr6zV//nzdfvvtOnr0aOglnZbu7m5JUl1dnSRp586dKhaLI47nggULNHPmzHF9PN+/ne/58Y9/rKlTp+riiy/WunXrNDAwEGJ5o6JUKunRRx9Vf3+/WlpazuixPOvCSN/vnXfeUalUUkNDw4jvNzQ06LXXXgu0qtG3ZMkSbdy4UfPnz9fhw4d177336
jOf+YxefvllVVdXh17eqOvo6JCkEx7X966bKFasWKHrr79es2fP1r59+/RXf/VXWrlypbZt26ak4TOHzhZxHOvOO+/U5ZdfrosvvljSu8cznU6rtrZ2RO14Pp4n2k5J+sIXvqBZs2apqalJu3fv1le/+lXt2bNHP/vZzwKu1u7Xv/61WlpalMvlVFVVpc2bN+vCCy/Url27ztixPOsH0MfFypUrh/+9cOFCLVmyRLNmzdJPf/pT3XzzzQFXhtN14403Dv/7kksu0cKFCzV37lxt3bpVS5cuDbiyU9Pa2qqXX3553D9H+VFOtp233nrr8L8vueQSTZ8+XUuXLtW+ffs0d+7cM73MUzZ//nzt2rVL3d3d+qd/+ietXr1a7e3tZ3QNZ/2f4KZOnapkMvmBV2B0dnaqsbEx0KrGXm1trc4//3zt3bs39FLGxHvH7uN2XCVpzpw5mjp16rg8tmvWrNFTTz2lX/ziFyM+NqWxsVGFQkFdXV0j6sfr8TzZdp7IkiVLJGncHc90Oq3zzjtPixcvVltbmxYtWqTvfe97Z/RYnvUDKJ1Oa/HixdqyZcvw9+I41pYtW9TS0hJwZWOrr69P+/bt0/Tp00MvZUzMnj1bjY2NI45rT0+PXnzxxQl9XKV3P/X36NGj4+rYOue0Zs0abd68Wc8//7xmz5494vrFixcrlUqNOJ579uzRgQMHxtXx/KjtPJFdu3ZJ0rg6nicSx7Hy+fyZPZaj+pKGMfLoo4+6TCbjNm7c6F599VV36623utraWtfR0RF6aaPmL/7iL9zWrVvd/v373b/927+5ZcuWualTp7ojR46EXtop6+3tdS+99JJ76aWXnCT3ne98x7300kvuzTffdM45961vfcvV1ta6J554wu3evdtde+21bvbs2W5wcDDwym0+bDt7e3vdl7/8Zbdt2za3f/9+99xzz7nf+73fc/PmzXO5XC700r3dfvvtLpvNuq1bt7rDhw8PXwYGBoZrbr
vtNjdz5kz3/PPPux07driWlhbX0tIScNV2H7Wde/fudffdd5/bsWOH279/v3viiSfcnDlz3BVXXBF45TZf+9rXXHt7u9u/f7/bvXu3+9rXvuaiKHL/8i//4pw7c8dyXAwg55z7wQ9+4GbOnOnS6bS77LLL3Pbt20MvaVTdcMMNbvr06S6dTrtzzjnH3XDDDW7v3r2hl3VafvGLXzhJH7isXr3aOffuS7G/8Y1vuIaGBpfJZNzSpUvdnj17wi76FHzYdg4MDLirr77aTZs2zaVSKTdr1ix3yy23jLtfnk60fZLcww8/PFwzODjo/uzP/sxNnjzZVVZWus997nPu8OHD4RZ9Cj5qOw8cOOCuuOIKV1dX5zKZjDvvvPPcX/7lX7ru7u6wCzf60z/9Uzdr1iyXTqfdtGnT3NKlS4eHj3Nn7ljycQwAgCDO+ueAAAATEwMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMT/B5JVDaVYFj2wAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "plt.imshow(x_train[800])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "4arvJDYwfsAj",
+ "outputId": "a355a4e2-c1a7-461e-bff9-059daaa6a9f7"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(32, 32, 3)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ],
+ "source": [
+ "x_train[0].shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ndeZ_RH32Upu"
+ },
+ "source": [
+ "(32, 32, 3) represents an image of size 32x32 in the RGB scale"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Preprocessing"
+ ],
+ "metadata": {
+ "id": "L2pg1uxSXPHn"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Standardization** is the process of transforming the pixel values
of an image to have zero mean and unit variance. This brings the pixel values
to a similar scale and makes them easier to work with."
+ ],
+ "metadata": {
+ "id": "Hwwm-EHhW0rC"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ZlInmab9MD-N"
+ },
+ "outputs": [],
+ "source": [
+ "x_train = x_train/255.0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Normalization** is the process of scaling the pixel values to a
specified range, typically between 0 and 1. This improves the consistency of
images."
+ ],
+ "metadata": {
+ "id": "6GFdU-HZWztg"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 447
+ },
+ "id": "TLmsgV9_Wij5",
+ "outputId": "03fb00c5-efb9-421c-ef55-bbd36679dfbe"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "<matplotlib.image.AxesImage at 0x7f4412adeb30>"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 9
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "<Figure size 640x480 with 1 Axes>"
+ ],
+ "image/png":
"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvsklEQVR4nO3df3Bc5Xn3/8/Z1e5KsqSVZVuShWVjG2Pzy85TBxwNCSXYxXanDARPB5LM1KR8YaAyU3DTJO4kEGg7SslMQpJxzB+luHkmhoQ+MQx8GyiYWDStTWsHPw5QHOwYbGJLBtv6rf2hPff3D76oFdhwX7bk2xLv18zOWNrLl+5zzu5eOtrdz0bOOScAAM6wROgFAAA+nhhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgykIv4P3iONahQ4dUXV2tKIpCLwcAYOScU29vr5qampRInPw856wbQIcOHVJzc3PoZQAATtPBgwc1Y8aMk14/ZgNo/fr1+va3v62Ojg4tWrRIP/jBD3TZZZd95P+rrq6WJP3R//NHSqVTXj+r+UL/gRWXFb1rJSlpOAlLRra/aCaU9K6NPuS3iBP2Npw9WrOYnItN9aXYv75kXExs+A+leMjU27JuOdvxcbKd3VsSs1xs24mx4Xhak7uGTMfetg+T6bR3bWVVjal3ZXayqT5K+B/PQq7X1Hugu8u7tpQrmHonDIfT8hBUyBX0v//q4eHH85MZkwH0k5/8RGvXrtWDDz6oJUuW6IEHHtDy5cu1Z88e1dfXf+j/fe/Pbql0SqmM3wDKVGS81xaXGW/kYzmAIgbQB2tta7ENIP/9/W59ybvWOVvvsR1Atp04lgMoMaYDyP9+n6ksN/XOVFaY6iPDA0WUsP0SPFTw386S8VkL2wCyPyXyUU+jjMmLEL7zne/olltu0Ze+9CVdeOGFevDBB1VZWal/+Id/GIsfBwA
Yh0Z9ABUKBe3cuVPLli377x+SSGjZsmXatm3bB+rz+bx6enpGXAAAE9+oD6B33nlHpVJJDQ0NI77f0NCgjo6OD9S3tbUpm80OX3gBAgB8PAR/H9C6devU3d09fDl48GDoJQEAzoBRfxHC1KlTlUwm1dnZOeL7nZ2damxs/EB9JpNRJuP/JBsAYGIY9TOgdDqtxYsXa8uWLcPfi+NYW7ZsUUtLy2j/OADAODUmL8Neu3atVq9erU9+8pO67LLL9MADD6i/v19f+tKXxuLHAQDGoTEZQDfccIPefvtt3X333ero6NAnPvEJPf300x94YQIA4ONrzJIQ1qxZozVr1pzy/y8NlT40Q+h/coY3uEcJ2yYnk/5/pUw4vzfOvseV/HsX8rY3rxUM74hOGP8Sm0zb3nSZKPd/x3osW1pBXPLfTssbLiXJ8p5L6xs0rW//jQz1LjL2trzJVbZ9mLDUO/83/kpSPOh/7PtyA6beg319pvrKyXXeteWTKk29s9P87z8547oHe/1TGUpD/vdN3/eHB38VHADg44kBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACGLMonhOl4uScgm/yBdX8t+Mw7/94IfifWjvgn9MSUV5jan3gTcPedfu+81vTb0tHw4/KV1laj15StZUf+78Gd6155w7xdQ79k8pUUmDpt4f8XH2I2tNnU+F/09IGFcTG9JyEiVbDFNsiBAqyRbFEyWt8Uf+XN4/okaSBo75R2UVS7bbeHlFtX9t5WRT70Tk/1E4+XzOuzZO5P1+vndHAABGEQMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEWZsFN1jIa0h+IVXd/V3efTve9s9fk6RCj38+VZyvMPU+bMiCSydsuVfHjh71ru2LbblXcdGWNdbxu1951y78xAJT7zkXNXvXpqptv2/lXJ93bTJh
CFSTpMiWqSbnv/aEIX9NkspMeW22Yz9kKffMfhzm/Pd5bAm8k6SE7bZi6Z/r9b9dSdJQzr93WcL4kB4Zjr2hdykx5FXHGRAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIizNoqnPJ1SKpPyq53kP0cv+l/zbOtIVnvXZsvPNfV+8zeHvWtf3bXT1HvmzJnetVXV5abe6cwkU/1rr77hX/t/99rWkkh7157/ybm23qmMd21B/abepcgvquQ9LvKPhIpiW1xOQv4ROHFki7RJGJaScLZ1m3J+jL1LxqXIEGeUGMrbOg/5H/uSMc7IlfnXl1X43x+SnrcTzoAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQZy1WXDOleRiv/kYGXKeXOSf2SRJQ27Qu7arcMDUu35eo3dt7+AnTL3f3LPfu/bYgU5T74F+W15beabKuzY3YMtUe3nnr71rB3r7TL1nzZ/lXVvXPM3Uu5jqMdXnXJd3rUvafq+M5Z+nZ7z7KCH/HDNn7F2W8t/OMkPm2btrsWXeWbLgJGNvVzQU2zIGS85/HyYNj7NJzzVzBgQACGLUB9A3v/lNRVE04rJgwYLR/jEAgHFuTP4Ed9FFF+m555777x9Sdtb+pQ8AEMiYTIaysjI1Nvo/vwEA+PgZk+eAXn/9dTU1NWnOnDn64he/qAMHTv7kfD6fV09Pz4gLAGDiG/UBtGTJEm3cuFFPP/20NmzYoP379+szn/mMent7T1jf1tambDY7fGlubh7tJQEAzkKjPoBWrlypP/7jP9bChQu1fPly/fM//7O6urr005/+9IT169atU3d39/Dl4MGDo70kAMBZaMxfHVBbW6vzzz9fe/ee+L0jmUxGmYz/Z40DACaGMX8fUF9fn/bt26fp06eP9Y8CAIwjoz6AvvzlL6u9vV1vvPGG/
v3f/12f+9znlEwm9fnPf360fxQAYBwb9T/BvfXWW/r85z+vo0ePatq0afr0pz+t7du3a9o0W1RJvr+gUtEv3mLIkD6RMMR3SFIp8o/NKLmjtt5D/r3PmTPT1Hugxz8C5a3X/eOGJCkeskXaxMm8d+3AoO1VkN1d/vv8+DHb8el8yz+i6LwL5pl6z77kHFN9de1U79r+0olf8HMyLvK/rcSG+4Nk+w03NibURJF/NIxZbO09hmsxxfwY84wM9UM5/8eJobzffX7UB9Cjjz462i0BABMQWXAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCDG/OMYTlUhFysueWZUFVL+jY1bHCf9g+aSyaStufPP4Kqqti18cl2Nd23fZP9aSaqfYtvOQt4/m6z7+DFT79xgv3ftQM4WNvbmmyf/JN/3O9Lxtql3Z+f5pvrFV3zCu7aqvs7Uu6/kv3brb6xx5P8/ooQtx8xSHTlbVptLGrfU0D+y5rVF1nw3fwlD5p2L/fdJwrOWMyAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBBnbxTPYFHxkF8ERfOUud59Z82bZVrHnjde9q493n/E1LuU8I+RKUVHTb2nTpvsXdv39jRT79KQLdaksmqSd+1FmUpT79/u2eNdWyzaonhyQ/5RSf1D/sdSkt7Y96apPpnwjz9a+JkFpt5lk/2PTykaNPW2/Ioby3Z8IucfUZMw1EoyReu8uxhj/RiJnG0fWrjI//6Q8KzlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVcs5RQn/Jb3q50vefd1LmNax/xzL/OuLSb6TL33/s5/3YMDx029yyr8t7Oq1j8LTJJ6evwzoSSpp7/XuzabbTD1Pv+Scu/awwd/a+ptif
fq6R4w9Y6LRVN9X5f/8X/7zbdNvWeUN3rXugrbukuJvHdtQra8Nkv6WtL5Z+lJkotsmWq2eltunDPUO2c7pygZdvmQ4XxlKPKr5QwIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZmwVXXTtJZWm/5cWZQe++z/3r/2taR/pf/XPS5s+7wNR77oK53rX5clvW2PHj/hlcqeoqU+/qshpTfVH+2WTHertMvcucfxacS9vWPZTr966tqKg29Y4qTeXKFfyP/zuH3jH1rs1O9q7Nzsmaepfibu9al7DlzEmG/DVLsJ8kyZgdl/DvHxtz6WLDw3RsXHexzL930bCOwlDOq44zIABAEOYB9MILL+iaa65RU1OToijS448/PuJ655zuvvtuTZ8+XRUVFVq2bJlef/310VovAGCCMA+g/v5+LVq0SOvXrz/h9ffff7++//3v68EHH9SLL76oSZMmafny5crl/E7JAAAfD+bngFauXKmVK1ee8DrnnB544AF9/etf17XXXitJ+tGPfqSGhgY9/vjjuvHGG09vtQCACWNUnwPav3+/Ojo6tGzZsuHvZbNZLVmyRNu2bTvh/8nn8+rp6RlxAQBMfKM6gDo6OiRJDQ0jP9WyoaFh+Lr3a2trUzabHb40NzeP5pIAAGep4K+CW7dunbq7u4cvBw8eDL0kAMAZMKoDqLHx3c+W7+zsHPH9zs7O4eveL5PJqKamZsQFADDxjeoAmj17thobG7Vly5bh7/X09OjFF19US0vLaP4oAMA4Z34VXF9fn/bu3Tv89f79+7Vr1y7V1dVp5syZuvPOO/U3f/M3mjdvnmbPnq1vfOMbampq0nXXXTea6wYAjHPmAbRjxw599rOfHf567dq1kqTVq1dr48aN+spXvqL+/n7deuut6urq0qc//Wk9/fTTKi/3j0yRpKpshVLplFdt42z/eJD62bbIlJ6j/nE
su17+V1Pv1/b8X+/azyy7ytT7/S8E+TCDuSOm3oP+6SqSpGmJE//59URSqQrbWgb6vGur6/xuT+/J93V51yZdwdS7ttY/4kmSBgb9Xx06OOgfTSVJv3vjkHdttv4iU+9s1n+f95T8I5skKU6W/GuNETUlZ7utlAzxOiXjWoZi/4fpfMF/n0hSPucf2VUs+N/xi559zQPoyiuvlHPupNdHUaT77rtP9913n7U1AOBjJPir4AAAH08MIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBDmKJ4zJY5ixVHsVVtyfnWSVJY8eYzQiUxp9M+Zy2b9ayXpzd8c8K594mebTL0vv3y5d+3c+bZ8rzfefMdUPzRkOD5pW2agG8h5107K1pt6T67zz9NzcdHUu7am0lTvSgPetQN9tky1/GCvd+3RN4+bep970TnetbmEf+6iJPUb9slQyZa/VixFpvo48q8vxLa8tv4+/wy2Qt6WAxgl/NddljLk4yX8tpEzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdtFE8yVaZk2m95lnAdV7JF8ZTckH9x2jbPZ1/oH/WilH8chyT92/b/4107ONBn6n3e/EtN9cWif3xLT58h7kNS/fTzvGtzg7btrKz0X0sist2VypK2qJekCv69M1Wm3sWC/22re9AWl3Po8FHv2swUWzxRvugfw1RK+u8/SVKZLbrHJQ2329h27Ctq/fdLbbra1DuT8Y++Sjj/fZL3jMjiDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVdeVaFUxi9fyUWxd1/n/GslyZLaVJIhN06SUkXv0lkX1JhaZyb1eNdu277Z1Pvw7zpM9Rf9ryXetVVZWxZcIumfk9XU3GzqnfHMIpSkfMF27Af7
bZlqlRnDLTGuNfUuFf2z4Hr7bce+q2fQu3ZyusLUu7au3ru2P+mfRyhJiUr/jDRJSqb8M9jihO02Hjv/Yx+XbLfDpPN/DIrz/rfZKPbL3uMMCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFkbxZOZVK50edqrNpYhiidypnVEhugeS60kRYmkd20i7V8rSdkG/+1snmfr/dtXdtjWUlPlXdt03gWm3n15/xiZfNF2c0+npnjXRkn/SBNJKgz1murl/I9nRcbWOnYl79rJWf/4G0lS0X+/OGeLkSkv94/uKZTb7vcu7ffYM1wv/50e2x4mFA/578PIUCtJruh/O4wHu/z7Dua96jgDAgAEwQACAARhHkAvvPCCrrnmGjU1NSmKIj3++OMjrr/pppsURdGIy4oVK0ZrvQCACcI8gPr7+7Vo0SKtX7/+pDUrVqzQ4cOHhy+PPPLIaS0SADDxmF+EsHLlSq1cufJDazKZjBobG095UQCAiW9MngPaunWr6uvrNX/+fN1+++06evToSWvz+bx6enpGXAAAE9+oD6AVK1boRz/6kbZs2aK/+7u/U3t7u1auXKlS6cQv9Wxra1M2mx2+NBs/tRIAMD6N+vuAbrzxxuF/X3LJJVq4cKHmzp2rrVu3aunSpR+oX7dundauXTv8dU9PD0MIAD4Gxvxl2HPmzNHUqVO1d+/eE16fyWRUU1Mz4gIAmPjGfAC99dZbOnr0qKZPnz7WPwoAMI6Y/wTX19c34mxm//792rVrl+rq6lRXV6d7771Xq1atUmNjo/bt26evfOUrOu+887R8+fJRXTgAYHwzD6AdO3bos5/97PDX7z1/s3r1am3YsEG7d+/WP/7jP6qrq0tNTU26+uqr9dd//dfKZGwBVcmyhJJlfidozhCu5CLTMgwpc1KUsIU8uZL/CWjNpDmm3jVT/DO7Eql9pt79vYdN9b/a+Qvv2qIrm
HrPPN9/v5QZM9KGSoa7h7M1T5elTPVvdxzwrh3K2V5Jmoz893ldrX+unyTNOn+Wd20ubTv2fSm/vDFJitP+uXGSLV/y3f+Q868dsm1nsjjgX2yplRQV/dcSxf6ZgSXPx2TzALryyivlPiQY8ZlnnrG2BAB8DJEFBwAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIYtQ/D2i0RIl3L1618g94iyJjGJxBHNnyvaKSf95Uf9+gqfc5hvTxSVW2fTI5Y/vIjKNN/jlp+157y9S7PJ30rq2uP27q3Zd707u2snyKqfc7R98x1R87fvJPFX6/qZNta8mkyr1rB8tsWWPdyV7v2qjafx2SpKT//S0y5q8ljPVxwX+/REOG3DhJUcl/Lcm4aOqtD4lVe7+S4bHTt5QzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdvFI/84xxs/KMnhhfi3do2z6OE/1qKBVsUz9Cgf8xP0+SLTL0nT59nqj+3rtK7drBnm6n3b179tXdt9lCjqXcuLnnXNp3vHzckSZOm2Oqz9f7xR9Mb/WOYJKmsrMq7ts/1mHonqv2jkpxsMTJRbsi7dqin39S7zNnub2XOEFHkbDE/kfxvh5ZYMklypnr/xxRfnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjh7s+AS7168OEu+my0Lzjn//KM48s+mMivaflfoO+q/lpde2WPqffxop6k+Ve2fe1ZW6Z8dJkn9vf75YXHhmKl3zbRy79pMyj/vTpKqs/69Jang8t61fTpiW4shry1dljL1LuX9c8/eOWBb9+u/es27dsYUWz7elGmTTPXl1f6PK1GZ7TEoTvo/BjnjOYXpodP02OlXyxkQACAIBhAAIAgGEAAgCAYQACAIBh
AAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACCIszeKxzlFnjkRUcIQg5G0xWCUpfxjSsoythiZhPOf/0OD/nEcktR3zD8u560DtiieeRfOM9Wnsv6xJsfe6jD1rq33jxw6duSoqXeqf4p3ba7XduwzVaZyTZpS411bVWeLkVFZv3dpYdA/EkiScsdy3rVH3zho6v27V/Z518ZZ/22UpNRFc0z1FRXV3rXJtO33/thF3rUu8q+VJEX+j4eJMajlDAgAEIRpALW1tenSSy9VdXW16uvrdd1112nPnpG/PedyObW2tmrKlCmqqqrSqlWr1NlpC68EAEx8pgHU3t6u1tZWbd++Xc8++6yKxaKuvvpq9ff/9+ntXXfdpSeffFKPPfaY2tvbdejQIV1//fWjvnAAwPhmeg7o6aefHvH1xo0bVV9fr507d+qKK65Qd3e3HnroIW3atElXXXWVJOnhhx/WBRdcoO3bt+tTn/rU6K0cADCundZzQN3d3ZKkuro6SdLOnTtVLBa1bNmy4ZoFCxZo5syZ2rZt2wl75PN59fT0jLgAACa+Ux5AcRzrzjvv1OWXX66LL75YktTR0aF0Oq3a2toRtQ0NDeroOPGrm9ra2pTNZocvzc3Np7okAMA4csoDqLW1VS+//LIeffTR01rAunXr1N3dPXw5eND2UkwAwPh0Su8DWrNmjZ566im98MILmjFjxvD3GxsbVSgU1NXVNeIsqLOzU42NjSfslclklMn4f2QzAGBiMJ0BOee0Zs0abd68Wc8//7xmz5494vrFixcrlUppy5Ytw9/bs2ePDhw4oJaWltFZMQBgQjCdAbW2tmrTpk164oknVF1dPfy8TjabVUVFhbLZrG6++WatXbtWdXV1qqmp0R133KGWlhZeAQcAGME0gDZs2CBJuvLKK0d8/+GHH9ZNN90kSfrud7+rRCKhVatWKZ/Pa/ny5frhD384KosFAEwcpgHkPLLZysvLtX79eq1fv/6
UFyVJmaqEMhV+fyGcVFXu3bc6618rSRWVae/ayoztNR0lz6w7Scr12zLs3t57yLt2siGrTZLmnn+BqT5f8M8De+e3r5t6nzuv3ru2GPeaeufz/jlz6Um2p1OzU237fFJdrXdtvmjLDRzsOeZdm+uzZapFQ/73icbGrKl34rJLvGv73/E/lpJUiG2ZagOFQe/ayirb8XGGLDhDXJskKTYsxRmesYk9a8mCAwAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEcUofx3AmzLpwiiqq/D6mobK8wrtv5GwxGPFQybt2qFg09e7uHfCuzfUWTL17ev1jZ6ZOOfFHZZxMearSVP/6a3u9a/v7bPuwqm6ad+30WbYYptf/yz8WyMk/bkiSamtqTfXvHPOPy+nt7TP1jkv+t/FEZNuHqaR/73S1LUdm1nz/GKaBev9ILUkqk+0jYmprkt61/YVOU28lLfvFf39LkpN/79j5j4vYsy1nQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztosOBc7xZ6BQseP9Xj3zedsmWqDA/4ZX4WcLYcpjvzzo+pqaky9U2n/fdLfY8sxe+2V10z173T4Z1+lM7acuVLSfx9m6237cL5metcee+OQqffLfbbcs0nTqr1r48h2G08mUt61kSmXTJLzz/aLE0Om1lEy8q6tnGzLghs8blxL5H+7TZXZbof5obz/Ooz70JX87/tR7H8so5JfLWdAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztoongO/OaZMhV98RrHkH4GTKLNtcjqT8a5NZWzzvLzKfy3lxt654lHv2uqaClPvVHLAVJ8f8I8FylTbYkok/xgZpfxjeyQpO22ad23n4f2m3sd+122qv6R5lndtMmOMY4n8
Y2oSCds+jF3sX2zsbQm+ssQNSVJmUpWpfjBtWHtmiqm3DI9vceQflyNJKhpiuIr+x9JFfvFBnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjhrs+CGhhJKDPnNx4oa/9ymiupy0zrKDPlhUcKWwaWo4F1aGjJkNkmKh/yymCQpU5M19a6u9M/Hk6RyQ56eq5hs6p0on+TfW7asMVdR51077/Lppt65AVueXt+A//EsV6WpdzITedc6SwCbJMX+v+MOyZAbJymKnP8yItvCXZl/b0nq6/K/75cl/bP3JKmyxv945uJBU+/IkKXoEv7rHor8+nIGBAAIwjSA2tradOmll6q6ulr19fW67rrrtGfPnhE1V155paIoGnG57bbbRnXRAIDxzzSA2tvb1draqu3bt+vZZ59VsVjU1Vdfrf7+/hF1t9xyiw4fPjx8uf/++0d10QCA8c/0HNDTTz894uuNGzeqvr5eO3fu1BVXXDH8/crKSjU2No7OCgEAE9JpPQfU3f3uh2rV1Y18svbHP/6xpk6dqosvvljr1q3TwIc84ZrP59XT0zPiAgCY+E75VXBxHOvOO+/U5Zdfrosvvnj4+1/4whc0a9YsNTU1affu3frqV7+qPXv26Gc/+9kJ+7S1tenee+891WUAAMapUx5Ara2tevnll/XLX/5yxPdvvfXW4X9fcsklmj59upYuXap9+/Zp7ty5H+izbt06rV27dvjrnp4eNTc3n+qyAADjxCkNoDVr1uipp57SCy+8oBkzZnxo7ZIlSyRJe/fuPeEAymQyyhjeJwIAmBhMA8g5pzvuuEObN2/W1q1bNXv27I/8P7t27ZIkTZ9ue6MeAGBiMw2g1tZWbdq0SU888YSqq6vV0dEhScpms6qoqNC+ffu0adMm/eEf/qGmTJmi3bt366677tIVV1yhhQsXjskGAADGJ9MA2rBhg6R332z6P
z388MO66aablE6n9dxzz+mBBx5Qf3+/mpubtWrVKn39618ftQUDACYG85/gPkxzc7Pa29tPa0HvqW3IKuOZORZl/DO+UinbK8/Lkv45WaW8LW+qUPDPgitL2tY9VPKvP3LU9tL3dNo/e0+S6qb5Z6r1GPa3JE2q9N/nccl2fI539XnXppO25zHf/u2bpvqXtr3iXfvJyy4z9Z49v967dsjZssYSCf/jacl2k6TIcJeIbDcrJRL+GWmSlO/0vy8X4ymm3rMX+b8o68DRI6befSX/jMFi5H+/Lw769SULDgAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxCl/HtBYc8mSXJlfdErsYu++ZTJGbAz4R2z0H+8y9U4YYoHKKipMvVPl/rEZA122eJUjb3eZ6tMV/jez2qx/rJIkNTb475ehgSFT7+Nvd3jX5ou241NTU26qn1TpX18YsB3PdOR/fIrGOKM44X8bN6blKPqIaLD/yZAIJEkaGiqa6uvqpnnX1lbPN/UuK/OPsiqp2tS733CfiOW/v4s5v1rOgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBnLVZcKl0Rul0xqs2MqRIubwty+rYoXe8a6PIPytJkjLpSu/awYItx6yQ919LnLMFZR0bPGaqr23yz6WbUl1j6l2Ie7xrB3P+uX6SlCjzv3vkCrbbVVWtLZNw/kXneNce+d3bpt79Ped616aqbZl3ueKAd23SGthmuL+5yNa7lPDPl5SkoSjnX1y0HZ/Ow8e9a7uKtnXHKf+MwYQhBzCR8KvlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZG8XjiiW5omecQ5T07psu86+VpOnn1HvXRsb4jnzRP77jeEeXqXfPsX7vWtdni/mpqL
bFmlRnp3rXZtJTTL2P9XZ41xbyeVPv8gr/2JlC/6Cpdylh2+d1U/33y5G3/I+9JL21b7937fyF80y9c8Vu79pS0nb/SUZ+UV3/f3dTb5ey/W5eKvOPeep3R229Y/+H6UlJ430zXfSujWP/WKVC5Lc/OAMCAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABHHWZsEdeO2g0uUpr9pkwj/fLZWxZcFlMv7ZStbekyr8tk+SqhL+tZLUNM0/wy6f7jH1jlP+uVeSlJ3qvxYlK029ayY3edeW19v2Yb7bPz/sWOXbpt6DA7bsuGKvf+5Zuef95j0dh970rp1cV2vqPeWcKu/annyXqbcz3N0SkS1nLoqcqT5p2OVRZMsB7Os67l2bssUdqqEp613bG/vfZuOYLDgAwFnMNIA2bNighQsXqqamRjU1NWppadHPf/7z4etzuZxaW1s1ZcoUVVVVadWqVers7Bz1RQMAxj/TAJoxY4a+9a1vaefOndqxY4euuuoqXXvttXrllVckSXfddZeefPJJPfbYY2pvb9ehQ4d0/fXXj8nCAQDjm+k5oGuuuWbE13/7t3+rDRs2aPv27ZoxY4Yeeughbdq0SVdddZUk6eGHH9YFF1yg7du361Of+tTorRoAMO6d8nNApVJJjz76qPr7+9XS0qKdO3eqWCxq2bJlwzULFizQzJkztW3btpP2yefz6unpGXEBAEx85gH061//WlVVVcpkMrrtttu0efNmXXjhhero6FA6nVZtbe2I+oaGBnV0nPxTK9va2pTNZocvzc3N5o0AAIw/5gE0f/587dq1Sy+++KJuv/12rV69Wq+++uopL2DdunXq7u4evhw8ePCUewEAxg/z+4DS6bTOO+88SdLixYv1n//5n/re976nG264QYVCQV1dXSPOgjo7O9XY2HjSfplMRpmM5bPdAQATwWm/DyiOY+XzeS1evFi
pVEpbtmwZvm7Pnj06cOCAWlpaTvfHAAAmGNMZ0Lp167Ry5UrNnDlTvb292rRpk7Zu3apnnnlG2WxWN998s9auXau6ujrV1NTojjvuUEtLC6+AAwB8gGkAHTlyRH/yJ3+iw4cPK5vNauHChXrmmWf0B3/wB5Kk7373u0okElq1apXy+byWL1+uH/7wh6e0sEJPLFfwi8+wnMblk0XTOvoThtgMY8RGddY/v6OpYZqtd5N/pE3HQJep91AmbapXynCEkrYskYT8I1Pyg7Zjn6rwz3ppmlVn6p3rtkXDbHv+V9612aztL+uzzpntXXv4rTdMvatr5nvXZrO2fdiV6/KuLau2xRNFCVsUT6nY6987zpl6Vxsivmqra029yxL+981I/rFkvrWmW+pDDz30odeXl5dr/fr1Wr9+vaUtAOBjiCw4AEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEOY07LHm3LsRGMW8f2xKZJijUdIWgRKNYRRPwZBokxsomHqX5f33ST5ni6gpOdvvLbl+Q7xO0da7JP/j6Yb8o0QkqZT0j0BJGo99bsB2Oyzm/fsPFWxrsdzXhorG23je/3Yb5WzxNwXD7TYqs/W2RvHEhsMZOVvvRNH/dpgv2aKsLPdly7Es5N6tdR+xrZH7qIoz7K233uJD6QBgAjh48KBmzJhx0uvPugEUx7EOHTqk6upqRdF//8ba09Oj5uZmHTx4UDU1NQFXOLbYzonj47CNEts50YzGdjrn1Nvbq6amJiU+JPD0rPsTXCKR+NCJWVNTM6EP/nvYzonj47CNEts50Zzudmaz2Y+s4UUIAIAgGEAAgCDGzQDKZDK65557lMlkQi9lTLGdE8fHYRsltnOiOZPbeda9CAEA8PEwbs6AAAATCwMIABAEAwgAEAQDCAAQxLgZQOvXr9e5556r8vJyLVmyRP/xH/8Rekmj6pvf/KaiKBpxWbBgQehlnZYX
XnhB11xzjZqamhRFkR5//PER1zvndPfdd2v69OmqqKjQsmXL9Prrr4dZ7Gn4qO286aabPnBsV6xYEWaxp6itrU2XXnqpqqurVV9fr+uuu0579uwZUZPL5dTa2qopU6aoqqpKq1atUmdnZ6AVnxqf7bzyyis/cDxvu+22QCs+NRs2bNDChQuH32za0tKin//858PXn6ljOS4G0E9+8hOtXbtW99xzj371q19p0aJFWr58uY4cORJ6aaPqoosu0uHDh4cvv/zlL0Mv6bT09/dr0aJFWr9+/Qmvv//++/X9739fDz74oF588UVNmjRJy5cvVy6XO8MrPT0ftZ2StGLFihHH9pFHHjmDKzx97e3tam1t1fbt2/Xss8+qWCzq6quvVn9//3DNXXfdpSeffFKPPfaY2tvbdejQIV1//fUBV23ns52SdMstt4w4nvfff3+gFZ+aGTNm6Fvf+pZ27typHTt26KqrrtK1116rV155RdIZPJZuHLjssstca2vr8NelUsk1NTW5tra2gKsaXffcc49btGhR6GWMGUlu8+bNw1/HcewaGxvdt7/97eHvdXV1uUwm4x555JEAKxwd799O55xbvXq1u/baa4OsZ6wcOXLESXLt7e3OuXePXSqVco899thwzX/91385SW7btm2hlnna3r+dzjn3+7//++7P//zPwy1qjEyePNn9/d///Rk9lmf9GVChUNDOnTu1bNmy4e8lEgktW7ZM27ZtC7iy0ff666+rqalJc+bM0Re/+EUdOHAg9JLGzP79+9XR0THiuGazWS1ZsmTCHVdJ2rp1q+rr6zV//nzdfvvtOnr0aOglnZbu7m5JUl1dnSRp586dKhaLI47nggULNHPmzHF9PN+/ne/58Y9/rKlTp+riiy/WunXrNDAwEGJ5o6JUKunRRx9Vf3+/WlpazuixPOvCSN/vnXfeUalUUkNDw4jvNzQ06LXXXgu0qtG3ZMkSbdy4UfPnz9fhw4d177336
jOf+YxefvllVVdXh17eqOvo6JCkEx7X966bKFasWKHrr79es2fP1r59+/RXf/VXWrlypbZt26ak4TOHzhZxHOvOO+/U5ZdfrosvvljSu8cznU6rtrZ2RO14Pp4n2k5J+sIXvqBZs2apqalJu3fv1le/+lXt2bNHP/vZzwKu1u7Xv/61WlpalMvlVFVVpc2bN+vCCy/Url27ztixPOsH0MfFypUrh/+9cOFCLVmyRLNmzdJPf/pT3XzzzQFXhtN14403Dv/7kksu0cKFCzV37lxt3bpVS5cuDbiyU9Pa2qqXX3553D9H+VFOtp233nrr8L8vueQSTZ8+XUuXLtW+ffs0d+7cM73MUzZ//nzt2rVL3d3d+qd/+ietXr1a7e3tZ3QNZ/2f4KZOnapkMvmBV2B0dnaqsbEx0KrGXm1trc4//3zt3bs39FLGxHvH7uN2XCVpzpw5mjp16rg8tmvWrNFTTz2lX/ziFyM+NqWxsVGFQkFdXV0j6sfr8TzZdp7IkiVLJGncHc90Oq3zzjtPixcvVltbmxYtWqTvfe97Z/RYnvUDKJ1Oa/HixdqyZcvw9+I41pYtW9TS0hJwZWOrr69P+/bt0/Tp00MvZUzMnj1bjY2NI45rT0+PXnzxxQl9XKV3P/X36NGj4+rYOue0Zs0abd68Wc8//7xmz5494vrFixcrlUqNOJ579uzRgQMHxtXx/KjtPJFdu3ZJ0rg6nicSx7Hy+fyZPZaj+pKGMfLoo4+6TCbjNm7c6F599VV36623utraWtfR0RF6aaPmL/7iL9zWrVvd/v373b/927+5ZcuWualTp7ojR46EXtop6+3tdS+99JJ76aWXnCT3ne98x7300kvuzTffdM45961vfcvV1ta6J554wu3evdtde+21bvbs2W5wcDDwym0+bDt7e3vdl7/8Zbdt2za3f/9+99xzz7nf+73fc/PmzXO5XC700r3dfvvtLpvNuq1bt7rDhw8PXwYGBoZrbr
vtNjdz5kz3/PPPux07driWlhbX0tIScNV2H7Wde/fudffdd5/bsWOH279/v3viiSfcnDlz3BVXXBF45TZf+9rXXHt7u9u/f7/bvXu3+9rXvuaiKHL/8i//4pw7c8dyXAwg55z7wQ9+4GbOnOnS6bS77LLL3Pbt20MvaVTdcMMNbvr06S6dTrtzzjnH3XDDDW7v3r2hl3VafvGLXzhJH7isXr3aOffuS7G/8Y1vuIaGBpfJZNzSpUvdnj17wi76FHzYdg4MDLirr77aTZs2zaVSKTdr1ix3yy23jLtfnk60fZLcww8/PFwzODjo/uzP/sxNnjzZVVZWus997nPu8OHD4RZ9Cj5qOw8cOOCuuOIKV1dX5zKZjDvvvPPcX/7lX7ru7u6wCzf60z/9Uzdr1iyXTqfdtGnT3NKlS4eHj3Nn7ljycQwAgCDO+ueAAAATEwMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMT/B5JVDaVYFj2wAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "x_train = (x_train - np.min(x_train)) / (np.max(x_train) -
np.min(x_train))\n",
+ "plt.imshow(x_train[800])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Grayscale Conversion** refers to the conversion of a colored image
in RGB scale into a grayscale image. It represents the pixel intensities
without considering colors, which makes calculations easier."
+ ],
+ "metadata": {
+ "id": "bfgy0Z_gX_lH"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "P2oPvZkbfEPo"
+ },
+ "outputs": [],
+ "source": [
+ "grayscale = []\n",
+ "for i in x_train:\n",
+ " grayImage = 0.07 * i[:,:,2] + 0.72 * i[:,:,1] + 0.21 * i[:,:,0]\n",
+ " grayscale.append(grayImage)\n",
+ "x_train_gray = np.asarray(grayscale)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jzQ2Zulg99NU"
+ },
+ "source": [
+ "## Defining DoFns for Image Preprocessing\n",
+ "\n",
+
"[DoFn](https://beam.apache.org/releases/typedoc/current/interfaces/transforms_pardo.DoFn)
stands for \"Do Function\". In Apache Beam, it is a set of operations that can
be applied to individual elements of a PCollection (a collection of data). It
is similar to a function in Python, except that it is used in Beam Pipelines to
apply various transformations. DoFns can be used in various Apache Beam
transforms, such as ParDo, Map, Filter, and FlatMap."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "cqm-m0cONsZS"
+ },
+ "outputs": [],
+ "source": [
+ "class StandardizeImage(beam.DoFn):\n",
+ " def process(self, element: np.ndarray):\n",
+ " element = element/255.0\n",
+ " return [element]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mZhFCgPxPEwm"
+ },
+ "outputs": [],
+ "source": [
+ "class NormalizeImage(beam.DoFn):\n",
+ " def process(self, element: np.ndarray):\n",
+ " element =
(element-element.min())/(element.max()-element.min())\n",
+ " return [element]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gv23KPt5NyXT"
+ },
+ "outputs": [],
+ "source": [
+ "class GrayscaleImage(beam.DoFn):\n",
+ " def process(self, element: np.ndarray):\n",
+ " element = 0.07 * element[:,:,2] + 0.72 * element[:,:,1] + 0.21 *
element[:,:,0]\n",
+ " return [element]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8gz7_SvN-P2L"
+ },
+ "source": [
+ "## Training a Convolutional Neural Network\n",
+ "\n",
+ "A Convolutional Neural Network (CNN) is one of the most popular model
for image processing. Here is a brief description of the convolutional layers
used in the model.\n",
Review Comment:
```suggestion
"A Convolutional Neural Network (CNN) is one of the most popular
model types for image processing. Here is a brief description of the
convolutional layers used in the model.\n",
```
##########
examples/notebooks/beam-ml/image_processing_beam.ipynb:
##########
@@ -0,0 +1,933 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "source": [
+ "# @title ###### Licensed to the Apache Software Foundation (ASF),
Version 2.0 (the \"License\")\n",
+ "\n",
+ "# Licensed to the Apache Software Foundation (ASF) under one\n",
+ "# or more contributor license agreements. See the NOTICE file\n",
+ "# distributed with this work for additional information\n",
+ "# regarding copyright ownership. The ASF licenses this file\n",
+ "# to you under the Apache License, Version 2.0 (the\n",
+ "# \"License\"); you may not use this file except in compliance\n",
+ "# with the License. You may obtain a copy of the License at\n",
+ "#\n",
+ "# http://www.apache.org/licenses/LICENSE-2.0\n",
+ "#\n",
+ "# Unless required by applicable law or agreed to in writing,\n",
+ "# software distributed under the License is distributed on an\n",
+ "# \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n",
+ "# KIND, either express or implied. See the License for the\n",
+ "# specific language governing permissions and limitations\n",
+ "# under the License"
+ ],
+ "metadata": {
+ "id": "NsNImDL8TGM1"
+ },
+ "execution_count": null,
+ "outputs": []
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "# Image Processing using Apache Beam\n",
+ "Image Processing is a machine learning technique to read, analyze and
extract meaningful information from images. It involves multiple steps such as
applying various preprocessing fuctions, getting predictions from a model,
storing the predictions in a useful format, etc. Apache Beam is a suitable tool
to handle these tasks and build a structured workflow. This notebook
demonstrates the use of Apache Beam in image processing and performs the
following:\n",
+ "* Import and preprocess the CIFAR-10 dataset\n",
+ "* Train a TensorFlow model to classify images\n",
+ "* Store the model in Google Cloud and create a model handler\n",
+ "* Build a Beam pipeline to:\n",
+ " 1. Create a
[PCollection]('https://beam.apache.org/documentation/programming-guide/#pcollections')
of input images\n",
+ " 2. Perform preprocessing
[transforms]('https://beam.apache.org/documentation/programming-guide/#transforms')\n",
+ " 3. RunInference to get predictions from the previously trained
model\n",
+ " 4. Store the results\n",
+ "\n",
+ "For more information on using Apache Beam for machine learning, have
a look at [AI/ML Pipelines using
Beam]('https://beam.apache.org/documentation/ml/overview/')."
+ ],
+ "metadata": {
+ "id": "SwN0Rj4cJSg5"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "OSZrRmHl9NQY"
+ },
+ "source": [
+ "## Installing Apache Beam"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "MO7iNmvkBdA5",
+ "outputId": "6c76e29d-3c70-4c3e-aca2-7cc1dcd167a1"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m14.3/14.3
MB\u001b[0m \u001b[31m28.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m89.7/89.7
kB\u001b[0m \u001b[31m8.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m137.0/137.0
kB\u001b[0m \u001b[31m15.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.0/152.0
kB\u001b[0m \u001b[31m14.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.6/2.6
MB\u001b[0m \u001b[31m44.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m648.9/648.9
kB\u001b[0m \u001b[31m46.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.7/2.7
MB\u001b[0m \u001b[31m84.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m283.7/283.7
kB\u001b[0m \u001b[31m27.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Building wheel for crcmod (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ " Building wheel for dill (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ " Building wheel for docopt (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m
\u001b[32m307.5/307.5 kB\u001b[0m \u001b[31m7.7 MB/s\u001b[0m eta
\u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m152.8/152.8
kB\u001b[0m \u001b[31m16.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.3/138.3
kB\u001b[0m \u001b[31m13.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Preparing metadata (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m798.7/798.7
kB\u001b[0m \u001b[31m24.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6
MB\u001b[0m \u001b[31m46.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[2K
\u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.1/2.1
MB\u001b[0m \u001b[31m60.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
+ "\u001b[?25h Building wheel for timeloop (setup.py) ...
\u001b[?25l\u001b[?25hdone\n",
+ "\u001b[31mERROR: pip's dependency resolver does not currently
take into account all the packages that are installed. This behaviour is the
source of the following dependency conflicts.\n",
+ "google-colab 1.0.0 requires ipykernel==5.5.6, but you have
ipykernel 6.23.2 which is incompatible.\n",
+ "google-colab 1.0.0 requires ipython==7.34.0, but you have ipython
8.14.0 which is incompatible.\u001b[0m\u001b[31m\n",
+ "\u001b[0m"
+ ]
+ }
+ ],
+ "source": [
+ "!pip install apache_beam --quiet\n",
+ "!pip install apache-beam[interactive] --quiet"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "45mf7oHu9XbI"
+ },
+ "source": [
+ "## Importing necessary libraries\n",
+ "Here is a brief overview of the uses of each library imported:\n",
+ "* **NumPy**: Multidimensional numpy arrays are used to store images,
and the library also allows performing various operations on them.\n",
+ "* **Matplotlib**: Displays images stored in numpy array format.\n",
+ "* **TensorFlow**: Trains a machine learning model.\n",
+ "* **TFModelHandlerNumpy**: Defines the configuration used to load/use
the model that we train. We use `TFModelHandlerNumpy` because the model was
trained with TensorFlow and takes numpy arrays as input.\n",
+ "* **RunInference**: Loads the model and obtains predictions as part
of the Apache Beam pipeline. For more information, see [docs on prediction and
inference](https://beam.apache.org/documentation/ml/inference-overview/).\n",
+ "* **Apache Beam**: Builds a pipeline for Image Processing."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "z5_PUeZgOygU"
+ },
+ "outputs": [],
+ "source": [
+ "import numpy as np\n",
+ "import matplotlib.pyplot as plt\n",
+ "import tensorflow as tf\n",
+ "from apache_beam.ml.inference.tensorflow_inference import
TFModelHandlerNumpy\n",
+ "from apache_beam.ml.inference.base import RunInference\n",
+ "import apache_beam as beam"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "x3tSAqP7R2rZ"
+ },
+ "source": [
+ "## CIFAR-10 Dataset\n",
+ "CIFAR-10 is a popular dataset used for multiclass object
classification.\n",
+ "It has 60,000 images of the following 10 categories:\n",
+ "\n",
+ "* airplane\n",
+ "* automobile\n",
+ "* bird\n",
+ "* cat\n",
+ "* deer\n",
+ "* dog\n",
+ "* frog\n",
+ "* horse\n",
+ "* ship\n",
+ "* truck\n",
+ "\n",
+ "The dataset can be directly imported from the TensorFlow library."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "MqylmjBhPCOW",
+ "outputId": "9d9f5854-80f2-4a4f-a52b-2b81d6295639"
+ },
+ "outputs": [
+ {
+ "output_type": "stream",
+ "name": "stdout",
+ "text": [
+ "Downloading data from
https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz\n",
+ "170498071/170498071 [==============================] - 4s
0us/step\n"
+ ]
+ }
+ ],
+ "source": [
+ "(x_train, y_train), (x_test, y_test) =
tf.keras.datasets.cifar10.load_data()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "source": [
+ "x_test.shape"
+ ],
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "pfzkgryZUV8P",
+ "outputId": "79bc798f-f93b-4d7b-8783-c5defa6a2322"
+ },
+ "execution_count": null,
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(10000, 32, 32, 3)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 4
+ }
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "The labels in y_train and y_test are numeric, with each number
representing a class. The labels list defined below contains the various
classes, and their positions in the list represent the corresponding number
used to refer to them."
+ ],
+ "metadata": {
+ "id": "6hEHIHPsVxw4"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "3uImFIBXv0My"
+ },
+ "outputs": [],
+ "source": [
+ "labels = ['Airplane', 'Automobile', 'Bird', 'Cat', 'Deer', 'Dog',
'Frog', 'Horse','Ship', 'Truck']"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 447
+ },
+ "id": "zeE81PNOcGfZ",
+ "outputId": "d2a08cb5-4fdc-47af-c2b2-5602e7600f09"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "<matplotlib.image.AxesImage at 0x7f441be49840>"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 6
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "<Figure size 640x480 with 1 Axes>"
+ ],
+ "image/png":
"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvsklEQVR4nO3df3Bc5Xn3/8/Z1e5KsqSVZVuShWVjG2Pzy85TBxwNCSXYxXanDARPB5LM1KR8YaAyU3DTJO4kEGg7SslMQpJxzB+luHkmhoQ+MQx8GyiYWDStTWsHPw5QHOwYbGJLBtv6rf2hPff3D76oFdhwX7bk2xLv18zOWNrLl+5zzu5eOtrdz0bOOScAAM6wROgFAAA+nhhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgykIv4P3iONahQ4dUXV2tKIpCLwcAYOScU29vr5qampRInPw856wbQIcOHVJzc3PoZQAATtPBgwc1Y8aMk14/ZgNo/fr1+va3v62Ojg4tWrRIP/jBD3TZZZd95P+rrq6WJP3R//NHSqVTXj+r+UL/gRWXFb1rJSlpOAlLRra/aCaU9K6NPuS3iBP2Npw9WrOYnItN9aXYv75kXExs+A+leMjU27JuOdvxcbKd3VsSs1xs24mx4Xhak7uGTMfetg+T6bR3bWVVjal3ZXayqT5K+B/PQq7X1Hugu8u7tpQrmHonDIfT8hBUyBX0v//q4eHH85MZkwH0k5/8RGvXrtWDDz6oJUuW6IEHHtDy5cu1Z88e1dfXf+j/fe/Pbql0SqmM3wDKVGS81xaXGW/kYzmAIgbQB2tta7ENIP/9/W59ybvWOVvvsR1Atp04lgMoMaYDyP9+n6ksN/XOVFaY6iPDA0WUsP0SPFTw386S8VkL2wCyPyXyUU+jjMmLEL7zne/olltu0Ze+9CVdeOGFevDBB1VZWal/+Id/GIsfBwA
Yh0Z9ABUKBe3cuVPLli377x+SSGjZsmXatm3bB+rz+bx6enpGXAAAE9+oD6B33nlHpVJJDQ0NI77f0NCgjo6OD9S3tbUpm80OX3gBAgB8PAR/H9C6devU3d09fDl48GDoJQEAzoBRfxHC1KlTlUwm1dnZOeL7nZ2damxs/EB9JpNRJuP/JBsAYGIY9TOgdDqtxYsXa8uWLcPfi+NYW7ZsUUtLy2j/OADAODUmL8Neu3atVq9erU9+8pO67LLL9MADD6i/v19f+tKXxuLHAQDGoTEZQDfccIPefvtt3X333ero6NAnPvEJPf300x94YQIA4ONrzJIQ1qxZozVr1pzy/y8NlT40Q+h/coY3uEcJ2yYnk/5/pUw4vzfOvseV/HsX8rY3rxUM74hOGP8Sm0zb3nSZKPd/x3osW1pBXPLfTssbLiXJ8p5L6xs0rW//jQz1LjL2trzJVbZ9mLDUO/83/kpSPOh/7PtyA6beg319pvrKyXXeteWTKk29s9P87z8547oHe/1TGUpD/vdN3/eHB38VHADg44kBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACGLMonhOl4uScgm/yBdX8t+Mw7/94IfifWjvgn9MSUV5jan3gTcPedfu+81vTb0tHw4/KV1laj15StZUf+78Gd6155w7xdQ79k8pUUmDpt4f8XH2I2tNnU+F/09IGFcTG9JyEiVbDFNsiBAqyRbFEyWt8Uf+XN4/okaSBo75R2UVS7bbeHlFtX9t5WRT70Tk/1E4+XzOuzZO5P1+vndHAABGEQMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEWZsFN1jIa0h+IVXd/V3efTve9s9fk6RCj38+VZyvMPU+bMiCSydsuVfHjh71ru2LbblXcdGWNdbxu1951y78xAJT7zkXNXvXpqptv2/lXJ93bTJh
CFSTpMiWqSbnv/aEIX9NkspMeW22Yz9kKffMfhzm/Pd5bAm8k6SE7bZi6Z/r9b9dSdJQzr93WcL4kB4Zjr2hdykx5FXHGRAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIizNoqnPJ1SKpPyq53kP0cv+l/zbOtIVnvXZsvPNfV+8zeHvWtf3bXT1HvmzJnetVXV5abe6cwkU/1rr77hX/t/99rWkkh7157/ybm23qmMd21B/abepcgvquQ9LvKPhIpiW1xOQv4ROHFki7RJGJaScLZ1m3J+jL1LxqXIEGeUGMrbOg/5H/uSMc7IlfnXl1X43x+SnrcTzoAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQZy1WXDOleRiv/kYGXKeXOSf2SRJQ27Qu7arcMDUu35eo3dt7+AnTL3f3LPfu/bYgU5T74F+W15beabKuzY3YMtUe3nnr71rB3r7TL1nzZ/lXVvXPM3Uu5jqMdXnXJd3rUvafq+M5Z+nZ7z7KCH/HDNn7F2W8t/OMkPm2btrsWXeWbLgJGNvVzQU2zIGS85/HyYNj7NJzzVzBgQACGLUB9A3v/lNRVE04rJgwYLR/jEAgHFuTP4Ed9FFF+m555777x9Sdtb+pQ8AEMiYTIaysjI1Nvo/vwEA+PgZk+eAXn/9dTU1NWnOnDn64he/qAMHTv7kfD6fV09Pz4gLAGDiG/UBtGTJEm3cuFFPP/20NmzYoP379+szn/mMent7T1jf1tambDY7fGlubh7tJQEAzkKjPoBWrlypP/7jP9bChQu1fPly/fM//7O6urr005/+9IT169atU3d39/Dl4MGDo70kAMBZaMxfHVBbW6vzzz9fe/ee+L0jmUxGmYz/Z40DACaGMX8fUF9fn/bt26fp06eP9Y8CAIwjoz6AvvzlL6u9vV1vvPGG/
v3f/12f+9znlEwm9fnPf360fxQAYBwb9T/BvfXWW/r85z+vo0ePatq0afr0pz+t7du3a9o0W1RJvr+gUtEv3mLIkD6RMMR3SFIp8o/NKLmjtt5D/r3PmTPT1Hugxz8C5a3X/eOGJCkeskXaxMm8d+3AoO1VkN1d/vv8+DHb8el8yz+i6LwL5pl6z77kHFN9de1U79r+0olf8HMyLvK/rcSG+4Nk+w03NibURJF/NIxZbO09hmsxxfwY84wM9UM5/8eJobzffX7UB9Cjjz462i0BABMQWXAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCDG/OMYTlUhFysueWZUFVL+jY1bHCf9g+aSyaStufPP4Kqqti18cl2Nd23fZP9aSaqfYtvOQt4/m6z7+DFT79xgv3ftQM4WNvbmmyf/JN/3O9Lxtql3Z+f5pvrFV3zCu7aqvs7Uu6/kv3brb6xx5P8/ooQtx8xSHTlbVptLGrfU0D+y5rVF1nw3fwlD5p2L/fdJwrOWMyAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBBnbxTPYFHxkF8ERfOUud59Z82bZVrHnjde9q493n/E1LuU8I+RKUVHTb2nTpvsXdv39jRT79KQLdaksmqSd+1FmUpT79/u2eNdWyzaonhyQ/5RSf1D/sdSkt7Y96apPpnwjz9a+JkFpt5lk/2PTykaNPW2/Ioby3Z8IucfUZMw1EoyReu8uxhj/RiJnG0fWrjI//6Q8KzlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVcs5RQn/Jb3q50vefd1LmNax/xzL/OuLSb6TL33/s5/3YMDx029yyr8t7Oq1j8LTJJ6evwzoSSpp7/XuzabbTD1Pv+Scu/awwd/a+ptif
fq6R4w9Y6LRVN9X5f/8X/7zbdNvWeUN3rXugrbukuJvHdtQra8Nkv6WtL5Z+lJkotsmWq2eltunDPUO2c7pygZdvmQ4XxlKPKr5QwIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZmwVXXTtJZWm/5cWZQe++z/3r/2taR/pf/XPS5s+7wNR77oK53rX5clvW2PHj/hlcqeoqU+/qshpTfVH+2WTHertMvcucfxacS9vWPZTr966tqKg29Y4qTeXKFfyP/zuH3jH1rs1O9q7Nzsmaepfibu9al7DlzEmG/DVLsJ8kyZgdl/DvHxtz6WLDw3RsXHexzL930bCOwlDOq44zIABAEOYB9MILL+iaa65RU1OToijS448/PuJ655zuvvtuTZ8+XRUVFVq2bJlef/310VovAGCCMA+g/v5+LVq0SOvXrz/h9ffff7++//3v68EHH9SLL76oSZMmafny5crl/E7JAAAfD+bngFauXKmVK1ee8DrnnB544AF9/etf17XXXitJ+tGPfqSGhgY9/vjjuvHGG09vtQCACWNUnwPav3+/Ojo6tGzZsuHvZbNZLVmyRNu2bTvh/8nn8+rp6RlxAQBMfKM6gDo6OiRJDQ0jP9WyoaFh+Lr3a2trUzabHb40NzeP5pIAAGep4K+CW7dunbq7u4cvBw8eDL0kAMAZMKoDqLHx3c+W7+zsHPH9zs7O4eveL5PJqKamZsQFADDxjeoAmj17thobG7Vly5bh7/X09OjFF19US0vLaP4oAMA4Z34VXF9fn/bu3Tv89f79+7Vr1y7V1dVp5syZuvPOO/U3f/M3mjdvnmbPnq1vfOMbampq0nXXXTea6wYAjHPmAbRjxw599rOfHf567dq1kqTVq1dr48aN+spXvqL+/n7deuut6urq0qc//Wk9/fTTKi/3j0yRpKpshVLplFdt42z/eJD62bbIlJ6j/nE
su17+V1Pv1/b8X+/azyy7ytT7/S8E+TCDuSOm3oP+6SqSpGmJE//59URSqQrbWgb6vGur6/xuT+/J93V51yZdwdS7ttY/4kmSBgb9Xx06OOgfTSVJv3vjkHdttv4iU+9s1n+f95T8I5skKU6W/GuNETUlZ7utlAzxOiXjWoZi/4fpfMF/n0hSPucf2VUs+N/xi559zQPoyiuvlHPupNdHUaT77rtP9913n7U1AOBjJPir4AAAH08MIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBDmKJ4zJY5ixVHsVVtyfnWSVJY8eYzQiUxp9M+Zy2b9ayXpzd8c8K594mebTL0vv3y5d+3c+bZ8rzfefMdUPzRkOD5pW2agG8h5107K1pt6T67zz9NzcdHUu7am0lTvSgPetQN9tky1/GCvd+3RN4+bep970TnetbmEf+6iJPUb9slQyZa/VixFpvo48q8vxLa8tv4+/wy2Qt6WAxgl/NddljLk4yX8tpEzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdtFE8yVaZk2m95lnAdV7JF8ZTckH9x2jbPZ1/oH/WilH8chyT92/b/4107ONBn6n3e/EtN9cWif3xLT58h7kNS/fTzvGtzg7btrKz0X0sist2VypK2qJekCv69M1Wm3sWC/22re9AWl3Po8FHv2swUWzxRvugfw1RK+u8/SVKZLbrHJQ2329h27Ctq/fdLbbra1DuT8Y++Sjj/fZL3jMjiDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVdeVaFUxi9fyUWxd1/n/GslyZLaVJIhN06SUkXv0lkX1JhaZyb1eNdu277Z1Pvw7zpM9Rf9ryXetVVZWxZcIumfk9XU3GzqnfHMIpSkfMF27Af7
bZlqlRnDLTGuNfUuFf2z4Hr7bce+q2fQu3ZyusLUu7au3ru2P+mfRyhJiUr/jDRJSqb8M9jihO02Hjv/Yx+XbLfDpPN/DIrz/rfZKPbL3uMMCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFkbxZOZVK50edqrNpYhiidypnVEhugeS60kRYmkd20i7V8rSdkG/+1snmfr/dtXdtjWUlPlXdt03gWm3n15/xiZfNF2c0+npnjXRkn/SBNJKgz1murl/I9nRcbWOnYl79rJWf/4G0lS0X+/OGeLkSkv94/uKZTb7vcu7ffYM1wv/50e2x4mFA/578PIUCtJruh/O4wHu/z7Dua96jgDAgAEwQACAARhHkAvvPCCrrnmGjU1NSmKIj3++OMjrr/pppsURdGIy4oVK0ZrvQCACcI8gPr7+7Vo0SKtX7/+pDUrVqzQ4cOHhy+PPPLIaS0SADDxmF+EsHLlSq1cufJDazKZjBobG095UQCAiW9MngPaunWr6uvrNX/+fN1+++06evToSWvz+bx6enpGXAAAE9+oD6AVK1boRz/6kbZs2aK/+7u/U3t7u1auXKlS6cQv9Wxra1M2mx2+NBs/tRIAMD6N+vuAbrzxxuF/X3LJJVq4cKHmzp2rrVu3aunSpR+oX7dundauXTv8dU9PD0MIAD4Gxvxl2HPmzNHUqVO1d+/eE16fyWRUU1Mz4gIAmPjGfAC99dZbOnr0qKZPnz7WPwoAMI6Y/wTX19c34mxm//792rVrl+rq6lRXV6d7771Xq1atUmNjo/bt26evfOUrOu+887R8+fJRXTgAYHwzD6AdO3bos5/97PDX7z1/s3r1am3YsEG7d+/WP/7jP6qrq0tNTU26+uqr9dd//dfKZGwBVcmyhJJlfidozhCu5CLTMgwpc1KUsIU8uZL/CWjNpDmm3jVT/DO7Eql9pt79vYdN9b/a+Qvv2qIrm
HrPPN9/v5QZM9KGSoa7h7M1T5elTPVvdxzwrh3K2V5Jmoz893ldrX+unyTNOn+Wd20ubTv2fSm/vDFJitP+uXGSLV/y3f+Q868dsm1nsjjgX2yplRQV/dcSxf6ZgSXPx2TzALryyivlPiQY8ZlnnrG2BAB8DJEFBwAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIYtQ/D2i0RIl3L1618g94iyJjGJxBHNnyvaKSf95Uf9+gqfc5hvTxSVW2fTI5Y/vIjKNN/jlp+157y9S7PJ30rq2uP27q3Zd707u2snyKqfc7R98x1R87fvJPFX6/qZNta8mkyr1rB8tsWWPdyV7v2qjafx2SpKT//S0y5q8ljPVxwX+/REOG3DhJUcl/Lcm4aOqtD4lVe7+S4bHTt5QzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdvFI/84xxs/KMnhhfi3do2z6OE/1qKBVsUz9Cgf8xP0+SLTL0nT59nqj+3rtK7drBnm6n3b179tXdt9lCjqXcuLnnXNp3vHzckSZOm2Oqz9f7xR9Mb/WOYJKmsrMq7ts/1mHonqv2jkpxsMTJRbsi7dqin39S7zNnub2XOEFHkbDE/kfxvh5ZYMklypnr/xxRfnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjh7s+AS7168OEu+my0Lzjn//KM48s+mMivaflfoO+q/lpde2WPqffxop6k+Ve2fe1ZW6Z8dJkn9vf75YXHhmKl3zbRy79pMyj/vTpKqs/69Jang8t61fTpiW4shry1dljL1LuX9c8/eOWBb9+u/es27dsYUWz7elGmTTPXl1f6PK1GZ7TEoTvo/BjnjOYXpodP02OlXyxkQACAIBhAAIAgGEAAgCAYQACAIBh
AAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACCIszeKxzlFnjkRUcIQg5G0xWCUpfxjSsoythiZhPOf/0OD/nEcktR3zD8u560DtiieeRfOM9Wnsv6xJsfe6jD1rq33jxw6duSoqXeqf4p3ba7XduwzVaZyTZpS411bVWeLkVFZv3dpYdA/EkiScsdy3rVH3zho6v27V/Z518ZZ/22UpNRFc0z1FRXV3rXJtO33/thF3rUu8q+VJEX+j4eJMajlDAgAEIRpALW1tenSSy9VdXW16uvrdd1112nPnpG/PedyObW2tmrKlCmqqqrSqlWr1NlpC68EAEx8pgHU3t6u1tZWbd++Xc8++6yKxaKuvvpq9ff/9+ntXXfdpSeffFKPPfaY2tvbdejQIV1//fWjvnAAwPhmeg7o6aefHvH1xo0bVV9fr507d+qKK65Qd3e3HnroIW3atElXXXWVJOnhhx/WBRdcoO3bt+tTn/rU6K0cADCundZzQN3d3ZKkuro6SdLOnTtVLBa1bNmy4ZoFCxZo5syZ2rZt2wl75PN59fT0jLgAACa+Ux5AcRzrzjvv1OWXX66LL75YktTR0aF0Oq3a2toRtQ0NDeroOPGrm9ra2pTNZocvzc3Np7okAMA4csoDqLW1VS+//LIeffTR01rAunXr1N3dPXw5eND2UkwAwPh0Su8DWrNmjZ566im98MILmjFjxvD3GxsbVSgU1NXVNeIsqLOzU42NjSfslclklMn4f2QzAGBiMJ0BOee0Zs0abd68Wc8//7xmz5494vrFixcrlUppy5Ytw9/bs2ePDhw4oJaWltFZMQBgQjCdAbW2tmrTpk164oknVF1dPfy8TjabVUVFhbLZrG6++WatXbtWdXV1qqmp0R133KGWlhZeAQcAGME0gDZs2CBJuvLKK0d8/+GHH9ZNN90kSfrud7+rRCKhVatWKZ/Pa/ny5frhD384KosFAEwcpgHkPLLZysvLtX79eq1fv/6
UFyVJmaqEMhV+fyGcVFXu3bc6618rSRWVae/ayoztNR0lz6w7Scr12zLs3t57yLt2siGrTZLmnn+BqT5f8M8De+e3r5t6nzuv3ru2GPeaeufz/jlz6Um2p1OzU237fFJdrXdtvmjLDRzsOeZdm+uzZapFQ/73icbGrKl34rJLvGv73/E/lpJUiG2ZagOFQe/ayirb8XGGLDhDXJskKTYsxRmesYk9a8mCAwAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEcUofx3AmzLpwiiqq/D6mobK8wrtv5GwxGPFQybt2qFg09e7uHfCuzfUWTL17ev1jZ6ZOOfFHZZxMearSVP/6a3u9a/v7bPuwqm6ad+30WbYYptf/yz8WyMk/bkiSamtqTfXvHPOPy+nt7TP1jkv+t/FEZNuHqaR/73S1LUdm1nz/GKaBev9ILUkqk+0jYmprkt61/YVOU28lLfvFf39LkpN/79j5j4vYsy1nQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztosOBc7xZ6BQseP9Xj3zedsmWqDA/4ZX4WcLYcpjvzzo+pqaky9U2n/fdLfY8sxe+2V10z173T4Z1+lM7acuVLSfx9m6237cL5metcee+OQqffLfbbcs0nTqr1r48h2G08mUt61kSmXTJLzz/aLE0Om1lEy8q6tnGzLghs8blxL5H+7TZXZbof5obz/Ooz70JX87/tR7H8so5JfLWdAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztoongO/OaZMhV98RrHkH4GTKLNtcjqT8a5NZWzzvLzKfy3lxt654lHv2uqaClPvVHLAVJ8f8I8FylTbYkok/xgZpfxjeyQpO22ad23n4f2m3sd+122qv6R5lndtMmOMY4n8
Y2oSCds+jF3sX2zsbQm+ssQNSVJmUpWpfjBtWHtmiqm3DI9vceQflyNJKhpiuIr+x9JFfvFBnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjhrs+CGhhJKDPnNx4oa/9ymiupy0zrKDPlhUcKWwaWo4F1aGjJkNkmKh/yymCQpU5M19a6u9M/Hk6RyQ56eq5hs6p0on+TfW7asMVdR51077/Lppt65AVueXt+A//EsV6WpdzITedc6SwCbJMX+v+MOyZAbJymKnP8yItvCXZl/b0nq6/K/75cl/bP3JKmyxv945uJBU+/IkKXoEv7rHor8+nIGBAAIwjSA2tradOmll6q6ulr19fW67rrrtGfPnhE1V155paIoGnG57bbbRnXRAIDxzzSA2tvb1draqu3bt+vZZ59VsVjU1Vdfrf7+/hF1t9xyiw4fPjx8uf/++0d10QCA8c/0HNDTTz894uuNGzeqvr5eO3fu1BVXXDH8/crKSjU2No7OCgEAE9JpPQfU3f3uh2rV1Y18svbHP/6xpk6dqosvvljr1q3TwIc84ZrP59XT0zPiAgCY+E75VXBxHOvOO+/U5Zdfrosvvnj4+1/4whc0a9YsNTU1affu3frqV7+qPXv26Gc/+9kJ+7S1tenee+891WUAAMapUx5Ara2tevnll/XLX/5yxPdvvfXW4X9fcsklmj59upYuXap9+/Zp7ty5H+izbt06rV27dvjrnp4eNTc3n+qyAADjxCkNoDVr1uipp57SCy+8oBkzZnxo7ZIlSyRJe/fuPeEAymQyyhjeJwIAmBhMA8g5pzvuuEObN2/W1q1bNXv27I/8P7t27ZIkTZ9ue6MeAGBiMw2g1tZWbdq0SU888YSqq6vV0dEhScpms6qoqNC+ffu0adMm/eEf/qGmTJmi3bt366677tIVV1yhhQsXjskGAADGJ9MA2rBhg6R332z6P
z388MO66aablE6n9dxzz+mBBx5Qf3+/mpubtWrVKn39618ftQUDACYG85/gPkxzc7Pa29tPa0HvqW3IKuOZORZl/DO+UinbK8/Lkv45WaW8LW+qUPDPgitL2tY9VPKvP3LU9tL3dNo/e0+S6qb5Z6r1GPa3JE2q9N/nccl2fI539XnXppO25zHf/u2bpvqXtr3iXfvJyy4z9Z49v967dsjZssYSCf/jacl2k6TIcJeIbDcrJRL+GWmSlO/0vy8X4ymm3rMX+b8o68DRI6befSX/jMFi5H+/Lw769SULDgAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxCl/HtBYc8mSXJlfdErsYu++ZTJGbAz4R2z0H+8y9U4YYoHKKipMvVPl/rEZA122eJUjb3eZ6tMV/jez2qx/rJIkNTb475ehgSFT7+Nvd3jX5ou241NTU26qn1TpX18YsB3PdOR/fIrGOKM44X8bN6blKPqIaLD/yZAIJEkaGiqa6uvqpnnX1lbPN/UuK/OPsiqp2tS733CfiOW/v4s5v1rOgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBnLVZcKl0Rul0xqs2MqRIubwty+rYoXe8a6PIPytJkjLpSu/awYItx6yQ919LnLMFZR0bPGaqr23yz6WbUl1j6l2Ie7xrB3P+uX6SlCjzv3vkCrbbVVWtLZNw/kXneNce+d3bpt79Ped616aqbZl3ueKAd23SGthmuL+5yNa7lPDPl5SkoSjnX1y0HZ/Ow8e9a7uKtnXHKf+MwYQhBzCR8KvlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZG8XjiiW5omecQ5T07psu86+VpOnn1HvXRsb4jnzRP77jeEeXqXfPsX7vWtdni/mpqL
bFmlRnp3rXZtJTTL2P9XZ41xbyeVPv8gr/2JlC/6Cpdylh2+d1U/33y5G3/I+9JL21b7937fyF80y9c8Vu79pS0nb/SUZ+UV3/f3dTb5ey/W5eKvOPeep3R229Y/+H6UlJ430zXfSujWP/WKVC5Lc/OAMCAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABHHWZsEdeO2g0uUpr9pkwj/fLZWxZcFlMv7ZStbekyr8tk+SqhL+tZLUNM0/wy6f7jH1jlP+uVeSlJ3qvxYlK029ayY3edeW19v2Yb7bPz/sWOXbpt6DA7bsuGKvf+5Zuef95j0dh970rp1cV2vqPeWcKu/annyXqbcz3N0SkS1nLoqcqT5p2OVRZMsB7Os67l2bssUdqqEp613bG/vfZuOYLDgAwFnMNIA2bNighQsXqqamRjU1NWppadHPf/7z4etzuZxaW1s1ZcoUVVVVadWqVers7Bz1RQMAxj/TAJoxY4a+9a1vaefOndqxY4euuuoqXXvttXrllVckSXfddZeefPJJPfbYY2pvb9ehQ4d0/fXXj8nCAQDjm+k5oGuuuWbE13/7t3+rDRs2aPv27ZoxY4Yeeughbdq0SVdddZUk6eGHH9YFF1yg7du361Of+tTorRoAMO6d8nNApVJJjz76qPr7+9XS0qKdO3eqWCxq2bJlwzULFizQzJkztW3btpP2yefz6unpGXEBAEx85gH061//WlVVVcpkMrrtttu0efNmXXjhhero6FA6nVZtbe2I+oaGBnV0nPxTK9va2pTNZocvzc3N5o0AAIw/5gE0f/587dq1Sy+++KJuv/12rV69Wq+++uopL2DdunXq7u4evhw8ePCUewEAxg/z+4DS6bTOO+88SdLixYv1n//5n/re976nG264QYVCQV1dXSPOgjo7O9XY2HjSfplMRpmM5bPdAQATwWm/DyiOY+XzeS1evFi
pVEpbtmwZvm7Pnj06cOCAWlpaTvfHAAAmGNMZ0Lp167Ry5UrNnDlTvb292rRpk7Zu3apnnnlG2WxWN998s9auXau6ujrV1NTojjvuUEtLC6+AAwB8gGkAHTlyRH/yJ3+iw4cPK5vNauHChXrmmWf0B3/wB5Kk7373u0okElq1apXy+byWL1+uH/7wh6e0sEJPLFfwi8+wnMblk0XTOvoThtgMY8RGddY/v6OpYZqtd5N/pE3HQJep91AmbapXynCEkrYskYT8I1Pyg7Zjn6rwz3ppmlVn6p3rtkXDbHv+V9612aztL+uzzpntXXv4rTdMvatr5nvXZrO2fdiV6/KuLau2xRNFCVsUT6nY6987zpl6Vxsivmqra029yxL+981I/rFkvrWmW+pDDz30odeXl5dr/fr1Wr9+vaUtAOBjiCw4AEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEOY07LHm3LsRGMW8f2xKZJijUdIWgRKNYRRPwZBokxsomHqX5f33ST5ni6gpOdvvLbl+Q7xO0da7JP/j6Yb8o0QkqZT0j0BJGo99bsB2Oyzm/fsPFWxrsdzXhorG23je/3Yb5WzxNwXD7TYqs/W2RvHEhsMZOVvvRNH/dpgv2aKsLPdly7Es5N6tdR+xrZH7qIoz7K233uJD6QBgAjh48KBmzJhx0uvPugEUx7EOHTqk6upqRdF//8ba09Oj5uZmHTx4UDU1NQFXOLbYzonj47CNEts50YzGdjrn1Nvbq6amJiU+JPD0rPsTXCKR+NCJWVNTM6EP/nvYzonj47CNEts50Zzudmaz2Y+s4UUIAIAgGEAAgCDGzQDKZDK65557lMlkQi9lTLGdE8fHYRsltnOiOZPbeda9CAEA8PEwbs6AAAATCwMIABAEAwgAEAQDCAAQxLgZQOvXr9e5556r8vJyLVmyRP/xH/8Rekmj6pvf/KaiKBpxWbBgQehlnZYX
XnhB11xzjZqamhRFkR5//PER1zvndPfdd2v69OmqqKjQsmXL9Prrr4dZ7Gn4qO286aabPnBsV6xYEWaxp6itrU2XXnqpqqurVV9fr+uuu0579uwZUZPL5dTa2qopU6aoqqpKq1atUmdnZ6AVnxqf7bzyyis/cDxvu+22QCs+NRs2bNDChQuH32za0tKin//858PXn6ljOS4G0E9+8hOtXbtW99xzj371q19p0aJFWr58uY4cORJ6aaPqoosu0uHDh4cvv/zlL0Mv6bT09/dr0aJFWr9+/Qmvv//++/X9739fDz74oF588UVNmjRJy5cvVy6XO8MrPT0ftZ2StGLFihHH9pFHHjmDKzx97e3tam1t1fbt2/Xss8+qWCzq6quvVn9//3DNXXfdpSeffFKPPfaY2tvbdejQIV1//fUBV23ns52SdMstt4w4nvfff3+gFZ+aGTNm6Fvf+pZ27typHTt26KqrrtK1116rV155RdIZPJZuHLjssstca2vr8NelUsk1NTW5tra2gKsaXffcc49btGhR6GWMGUlu8+bNw1/HcewaGxvdt7/97eHvdXV1uUwm4x555JEAKxwd799O55xbvXq1u/baa4OsZ6wcOXLESXLt7e3OuXePXSqVco899thwzX/91385SW7btm2hlnna3r+dzjn3+7//++7P//zPwy1qjEyePNn9/d///Rk9lmf9GVChUNDOnTu1bNmy4e8lEgktW7ZM27ZtC7iy0ff666+rqalJc+bM0Re/+EUdOHAg9JLGzP79+9XR0THiuGazWS1ZsmTCHVdJ2rp1q+rr6zV//nzdfvvtOnr0aOglnZbu7m5JUl1dnSRp586dKhaLI47nggULNHPmzHF9PN+/ne/58Y9/rKlTp+riiy/WunXrNDAwEGJ5o6JUKunRRx9Vf3+/WlpazuixPOvCSN/vnXfeUalUUkNDw4jvNzQ06LXXXgu0qtG3ZMkSbdy4UfPnz9fhw4d177336
jOf+YxefvllVVdXh17eqOvo6JCkEx7X966bKFasWKHrr79es2fP1r59+/RXf/VXWrlypbZt26ak4TOHzhZxHOvOO+/U5ZdfrosvvljSu8cznU6rtrZ2RO14Pp4n2k5J+sIXvqBZs2apqalJu3fv1le/+lXt2bNHP/vZzwKu1u7Xv/61WlpalMvlVFVVpc2bN+vCCy/Url27ztixPOsH0MfFypUrh/+9cOFCLVmyRLNmzdJPf/pT3XzzzQFXhtN14403Dv/7kksu0cKFCzV37lxt3bpVS5cuDbiyU9Pa2qqXX3553D9H+VFOtp233nrr8L8vueQSTZ8+XUuXLtW+ffs0d+7cM73MUzZ//nzt2rVL3d3d+qd/+ietXr1a7e3tZ3QNZ/2f4KZOnapkMvmBV2B0dnaqsbEx0KrGXm1trc4//3zt3bs39FLGxHvH7uN2XCVpzpw5mjp16rg8tmvWrNFTTz2lX/ziFyM+NqWxsVGFQkFdXV0j6sfr8TzZdp7IkiVLJGncHc90Oq3zzjtPixcvVltbmxYtWqTvfe97Z/RYnvUDKJ1Oa/HixdqyZcvw9+I41pYtW9TS0hJwZWOrr69P+/bt0/Tp00MvZUzMnj1bjY2NI45rT0+PXnzxxQl9XKV3P/X36NGj4+rYOue0Zs0abd68Wc8//7xmz5494vrFixcrlUqNOJ579uzRgQMHxtXx/KjtPJFdu3ZJ0rg6nicSx7Hy+fyZPZaj+pKGMfLoo4+6TCbjNm7c6F599VV36623utraWtfR0RF6aaPmL/7iL9zWrVvd/v373b/927+5ZcuWualTp7ojR46EXtop6+3tdS+99JJ76aWXnCT3ne98x7300kvuzTffdM45961vfcvV1ta6J554wu3evdtde+21bvbs2W5wcDDwym0+bDt7e3vdl7/8Zbdt2za3f/9+99xzz7nf+73fc/PmzXO5XC700r3dfvvtLpvNuq1bt7rDhw8PXwYGBoZrbr
vtNjdz5kz3/PPPux07driWlhbX0tIScNV2H7Wde/fudffdd5/bsWOH279/v3viiSfcnDlz3BVXXBF45TZf+9rXXHt7u9u/f7/bvXu3+9rXvuaiKHL/8i//4pw7c8dyXAwg55z7wQ9+4GbOnOnS6bS77LLL3Pbt20MvaVTdcMMNbvr06S6dTrtzzjnH3XDDDW7v3r2hl3VafvGLXzhJH7isXr3aOffuS7G/8Y1vuIaGBpfJZNzSpUvdnj17wi76FHzYdg4MDLirr77aTZs2zaVSKTdr1ix3yy23jLtfnk60fZLcww8/PFwzODjo/uzP/sxNnjzZVVZWus997nPu8OHD4RZ9Cj5qOw8cOOCuuOIKV1dX5zKZjDvvvPPcX/7lX7ru7u6wCzf60z/9Uzdr1iyXTqfdtGnT3NKlS4eHj3Nn7ljycQwAgCDO+ueAAAATEwMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMT/B5JVDaVYFj2wAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "plt.imshow(x_train[800])"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "4arvJDYwfsAj",
+ "outputId": "a355a4e2-c1a7-461e-bff9-059daaa6a9f7"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "(32, 32, 3)"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 7
+ }
+ ],
+ "source": [
+ "x_train[0].shape"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "ndeZ_RH32Upu"
+ },
+ "source": [
+ "(32, 32, 3) represents an image of size 32x32 in the RGB scale"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "### Preprocessing"
+ ],
+ "metadata": {
+ "id": "L2pg1uxSXPHn"
+ }
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Standardization** is the process of transforming the pixel values
of an image to have zero mean and unit variance. This brings the pixel values
to a similar scale and makes them easier to work with."
+ ],
+ "metadata": {
+ "id": "Hwwm-EHhW0rC"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "ZlInmab9MD-N"
+ },
+ "outputs": [],
+ "source": [
+ "x_train = x_train/255.0"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Normalization** is the process of scaling the pixel values to a
specified range, typically between 0 and 1. This improves the consistency of
images."
+ ],
+ "metadata": {
+ "id": "6GFdU-HZWztg"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 447
+ },
+ "id": "TLmsgV9_Wij5",
+ "outputId": "03fb00c5-efb9-421c-ef55-bbd36679dfbe"
+ },
+ "outputs": [
+ {
+ "output_type": "execute_result",
+ "data": {
+ "text/plain": [
+ "<matplotlib.image.AxesImage at 0x7f4412adeb30>"
+ ]
+ },
+ "metadata": {},
+ "execution_count": 9
+ },
+ {
+ "output_type": "display_data",
+ "data": {
+ "text/plain": [
+ "<Figure size 640x480 with 1 Axes>"
+ ],
+ "image/png":
"iVBORw0KGgoAAAANSUhEUgAAAaAAAAGdCAYAAABU0qcqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvsklEQVR4nO3df3Bc5Xn3/8/Z1e5KsqSVZVuShWVjG2Pzy85TBxwNCSXYxXanDARPB5LM1KR8YaAyU3DTJO4kEGg7SslMQpJxzB+luHkmhoQ+MQx8GyiYWDStTWsHPw5QHOwYbGJLBtv6rf2hPff3D76oFdhwX7bk2xLv18zOWNrLl+5zzu5eOtrdz0bOOScAAM6wROgFAAA+nhhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgykIv4P3iONahQ4dUXV2tKIpCLwcAYOScU29vr5qampRInPw856wbQIcOHVJzc3PoZQAATtPBgwc1Y8aMk14/ZgNo/fr1+va3v62Ojg4tWrRIP/jBD3TZZZd95P+rrq6WJP3R//NHSqVTXj+r+UL/gRWXFb1rJSlpOAlLRra/aCaU9K6NPuS3iBP2Npw9WrOYnItN9aXYv75kXExs+A+leMjU27JuOdvxcbKd3VsSs1xs24mx4Xhak7uGTMfetg+T6bR3bWVVjal3ZXayqT5K+B/PQq7X1Hugu8u7tpQrmHonDIfT8hBUyBX0v//q4eHH85MZkwH0k5/8RGvXrtWDDz6oJUuW6IEHHtDy5cu1Z88e1dfXf+j/fe/Pbql0SqmM3wDKVGS81xaXGW/kYzmAIgbQB2tta7ENIP/9/W59ybvWOVvvsR1Atp04lgMoMaYDyP9+n6ksN/XOVFaY6iPDA0WUsP0SPFTw386S8VkL2wCyPyXyUU+jjMmLEL7zne/olltu0Ze+9CVdeOGFevDBB1VZWal/+Id/GIsfBwA
Yh0Z9ABUKBe3cuVPLli377x+SSGjZsmXatm3bB+rz+bx6enpGXAAAE9+oD6B33nlHpVJJDQ0NI77f0NCgjo6OD9S3tbUpm80OX3gBAgB8PAR/H9C6devU3d09fDl48GDoJQEAzoBRfxHC1KlTlUwm1dnZOeL7nZ2damxs/EB9JpNRJuP/JBsAYGIY9TOgdDqtxYsXa8uWLcPfi+NYW7ZsUUtLy2j/OADAODUmL8Neu3atVq9erU9+8pO67LLL9MADD6i/v19f+tKXxuLHAQDGoTEZQDfccIPefvtt3X333ero6NAnPvEJPf300x94YQIA4ONrzJIQ1qxZozVr1pzy/y8NlT40Q+h/coY3uEcJ2yYnk/5/pUw4vzfOvseV/HsX8rY3rxUM74hOGP8Sm0zb3nSZKPd/x3osW1pBXPLfTssbLiXJ8p5L6xs0rW//jQz1LjL2trzJVbZ9mLDUO/83/kpSPOh/7PtyA6beg319pvrKyXXeteWTKk29s9P87z8547oHe/1TGUpD/vdN3/eHB38VHADg44kBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACGLMonhOl4uScgm/yBdX8t+Mw7/94IfifWjvgn9MSUV5jan3gTcPedfu+81vTb0tHw4/KV1laj15StZUf+78Gd6155w7xdQ79k8pUUmDpt4f8XH2I2tNnU+F/09IGFcTG9JyEiVbDFNsiBAqyRbFEyWt8Uf+XN4/okaSBo75R2UVS7bbeHlFtX9t5WRT70Tk/1E4+XzOuzZO5P1+vndHAABGEQMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABDEWZsFN1jIa0h+IVXd/V3efTve9s9fk6RCj38+VZyvMPU+bMiCSydsuVfHjh71ru2LbblXcdGWNdbxu1951y78xAJT7zkXNXvXpqptv2/lXJ93bTJh
CFSTpMiWqSbnv/aEIX9NkspMeW22Yz9kKffMfhzm/Pd5bAm8k6SE7bZi6Z/r9b9dSdJQzr93WcL4kB4Zjr2hdykx5FXHGRAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIIizNoqnPJ1SKpPyq53kP0cv+l/zbOtIVnvXZsvPNfV+8zeHvWtf3bXT1HvmzJnetVXV5abe6cwkU/1rr77hX/t/99rWkkh7157/ybm23qmMd21B/abepcgvquQ9LvKPhIpiW1xOQv4ROHFki7RJGJaScLZ1m3J+jL1LxqXIEGeUGMrbOg/5H/uSMc7IlfnXl1X43x+SnrcTzoAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQZy1WXDOleRiv/kYGXKeXOSf2SRJQ27Qu7arcMDUu35eo3dt7+AnTL3f3LPfu/bYgU5T74F+W15beabKuzY3YMtUe3nnr71rB3r7TL1nzZ/lXVvXPM3Uu5jqMdXnXJd3rUvafq+M5Z+nZ7z7KCH/HDNn7F2W8t/OMkPm2btrsWXeWbLgJGNvVzQU2zIGS85/HyYNj7NJzzVzBgQACGLUB9A3v/lNRVE04rJgwYLR/jEAgHFuTP4Ed9FFF+m555777x9Sdtb+pQ8AEMiYTIaysjI1Nvo/vwEA+PgZk+eAXn/9dTU1NWnOnDn64he/qAMHTv7kfD6fV09Pz4gLAGDiG/UBtGTJEm3cuFFPP/20NmzYoP379+szn/mMent7T1jf1tambDY7fGlubh7tJQEAzkKjPoBWrlypP/7jP9bChQu1fPly/fM//7O6urr005/+9IT169atU3d39/Dl4MGDo70kAMBZaMxfHVBbW6vzzz9fe/ee+L0jmUxGmYz/Z40DACaGMX8fUF9fn/bt26fp06eP9Y8CAIwjoz6AvvzlL6u9vV1vvPGG/
v3f/12f+9znlEwm9fnPf360fxQAYBwb9T/BvfXWW/r85z+vo0ePatq0afr0pz+t7du3a9o0W1RJvr+gUtEv3mLIkD6RMMR3SFIp8o/NKLmjtt5D/r3PmTPT1Hugxz8C5a3X/eOGJCkeskXaxMm8d+3AoO1VkN1d/vv8+DHb8el8yz+i6LwL5pl6z77kHFN9de1U79r+0olf8HMyLvK/rcSG+4Nk+w03NibURJF/NIxZbO09hmsxxfwY84wM9UM5/8eJobzffX7UB9Cjjz462i0BABMQWXAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCDG/OMYTlUhFysueWZUFVL+jY1bHCf9g+aSyaStufPP4Kqqti18cl2Nd23fZP9aSaqfYtvOQt4/m6z7+DFT79xgv3ftQM4WNvbmmyf/JN/3O9Lxtql3Z+f5pvrFV3zCu7aqvs7Uu6/kv3brb6xx5P8/ooQtx8xSHTlbVptLGrfU0D+y5rVF1nw3fwlD5p2L/fdJwrOWMyAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBBnbxTPYFHxkF8ERfOUud59Z82bZVrHnjde9q493n/E1LuU8I+RKUVHTb2nTpvsXdv39jRT79KQLdaksmqSd+1FmUpT79/u2eNdWyzaonhyQ/5RSf1D/sdSkt7Y96apPpnwjz9a+JkFpt5lk/2PTykaNPW2/Ioby3Z8IucfUZMw1EoyReu8uxhj/RiJnG0fWrjI//6Q8KzlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVcs5RQn/Jb3q50vefd1LmNax/xzL/OuLSb6TL33/s5/3YMDx029yyr8t7Oq1j8LTJJ6evwzoSSpp7/XuzabbTD1Pv+Scu/awwd/a+ptif
fq6R4w9Y6LRVN9X5f/8X/7zbdNvWeUN3rXugrbukuJvHdtQra8Nkv6WtL5Z+lJkotsmWq2eltunDPUO2c7pygZdvmQ4XxlKPKr5QwIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZmwVXXTtJZWm/5cWZQe++z/3r/2taR/pf/XPS5s+7wNR77oK53rX5clvW2PHj/hlcqeoqU+/qshpTfVH+2WTHertMvcucfxacS9vWPZTr966tqKg29Y4qTeXKFfyP/zuH3jH1rs1O9q7Nzsmaepfibu9al7DlzEmG/DVLsJ8kyZgdl/DvHxtz6WLDw3RsXHexzL930bCOwlDOq44zIABAEOYB9MILL+iaa65RU1OToijS448/PuJ655zuvvtuTZ8+XRUVFVq2bJlef/310VovAGCCMA+g/v5+LVq0SOvXrz/h9ffff7++//3v68EHH9SLL76oSZMmafny5crl/E7JAAAfD+bngFauXKmVK1ee8DrnnB544AF9/etf17XXXitJ+tGPfqSGhgY9/vjjuvHGG09vtQCACWNUnwPav3+/Ojo6tGzZsuHvZbNZLVmyRNu2bTvh/8nn8+rp6RlxAQBMfKM6gDo6OiRJDQ0jP9WyoaFh+Lr3a2trUzabHb40NzeP5pIAAGep4K+CW7dunbq7u4cvBw8eDL0kAMAZMKoDqLHx3c+W7+zsHPH9zs7O4eveL5PJqKamZsQFADDxjeoAmj17thobG7Vly5bh7/X09OjFF19US0vLaP4oAMA4Z34VXF9fn/bu3Tv89f79+7Vr1y7V1dVp5syZuvPOO/U3f/M3mjdvnmbPnq1vfOMbampq0nXXXTea6wYAjHPmAbRjxw599rOfHf567dq1kqTVq1dr48aN+spXvqL+/n7deuut6urq0qc//Wk9/fTTKi/3j0yRpKpshVLplFdt42z/eJD62bbIlJ6j/nE
su17+V1Pv1/b8X+/azyy7ytT7/S8E+TCDuSOm3oP+6SqSpGmJE//59URSqQrbWgb6vGur6/xuT+/J93V51yZdwdS7ttY/4kmSBgb9Xx06OOgfTSVJv3vjkHdttv4iU+9s1n+f95T8I5skKU6W/GuNETUlZ7utlAzxOiXjWoZi/4fpfMF/n0hSPucf2VUs+N/xi559zQPoyiuvlHPupNdHUaT77rtP9913n7U1AOBjJPir4AAAH08MIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBDmKJ4zJY5ixVHsVVtyfnWSVJY8eYzQiUxp9M+Zy2b9ayXpzd8c8K594mebTL0vv3y5d+3c+bZ8rzfefMdUPzRkOD5pW2agG8h5107K1pt6T67zz9NzcdHUu7am0lTvSgPetQN9tky1/GCvd+3RN4+bep970TnetbmEf+6iJPUb9slQyZa/VixFpvo48q8vxLa8tv4+/wy2Qt6WAxgl/NddljLk4yX8tpEzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdtFE8yVaZk2m95lnAdV7JF8ZTckH9x2jbPZ1/oH/WilH8chyT92/b/4107ONBn6n3e/EtN9cWif3xLT58h7kNS/fTzvGtzg7btrKz0X0sist2VypK2qJekCv69M1Wm3sWC/22re9AWl3Po8FHv2swUWzxRvugfw1RK+u8/SVKZLbrHJQ2329h27Ctq/fdLbbra1DuT8Y++Sjj/fZL3jMjiDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFmbBVdeVaFUxi9fyUWxd1/n/GslyZLaVJIhN06SUkXv0lkX1JhaZyb1eNdu277Z1Pvw7zpM9Rf9ryXetVVZWxZcIumfk9XU3GzqnfHMIpSkfMF27Af7
bZlqlRnDLTGuNfUuFf2z4Hr7bce+q2fQu3ZyusLUu7au3ru2P+mfRyhJiUr/jDRJSqb8M9jihO02Hjv/Yx+XbLfDpPN/DIrz/rfZKPbL3uMMCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxFkbxZOZVK50edqrNpYhiidypnVEhugeS60kRYmkd20i7V8rSdkG/+1snmfr/dtXdtjWUlPlXdt03gWm3n15/xiZfNF2c0+npnjXRkn/SBNJKgz1murl/I9nRcbWOnYl79rJWf/4G0lS0X+/OGeLkSkv94/uKZTb7vcu7ffYM1wv/50e2x4mFA/578PIUCtJruh/O4wHu/z7Dua96jgDAgAEwQACAARhHkAvvPCCrrnmGjU1NSmKIj3++OMjrr/pppsURdGIy4oVK0ZrvQCACcI8gPr7+7Vo0SKtX7/+pDUrVqzQ4cOHhy+PPPLIaS0SADDxmF+EsHLlSq1cufJDazKZjBobG095UQCAiW9MngPaunWr6uvrNX/+fN1+++06evToSWvz+bx6enpGXAAAE9+oD6AVK1boRz/6kbZs2aK/+7u/U3t7u1auXKlS6cQv9Wxra1M2mx2+NBs/tRIAMD6N+vuAbrzxxuF/X3LJJVq4cKHmzp2rrVu3aunSpR+oX7dundauXTv8dU9PD0MIAD4Gxvxl2HPmzNHUqVO1d+/eE16fyWRUU1Mz4gIAmPjGfAC99dZbOnr0qKZPnz7WPwoAMI6Y/wTX19c34mxm//792rVrl+rq6lRXV6d7771Xq1atUmNjo/bt26evfOUrOu+887R8+fJRXTgAYHwzD6AdO3bos5/97PDX7z1/s3r1am3YsEG7d+/WP/7jP6qrq0tNTU26+uqr9dd//dfKZGwBVcmyhJJlfidozhCu5CLTMgwpc1KUsIU8uZL/CWjNpDmm3jVT/DO7Eql9pt79vYdN9b/a+Qvv2qIrm
HrPPN9/v5QZM9KGSoa7h7M1T5elTPVvdxzwrh3K2V5Jmoz893ldrX+unyTNOn+Wd20ubTv2fSm/vDFJitP+uXGSLV/y3f+Q868dsm1nsjjgX2yplRQV/dcSxf6ZgSXPx2TzALryyivlPiQY8ZlnnrG2BAB8DJEFBwAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIggEEAAiCAQQACIIBBAAIYtQ/D2i0RIl3L1618g94iyJjGJxBHNnyvaKSf95Uf9+gqfc5hvTxSVW2fTI5Y/vIjKNN/jlp+157y9S7PJ30rq2uP27q3Zd707u2snyKqfc7R98x1R87fvJPFX6/qZNta8mkyr1rB8tsWWPdyV7v2qjafx2SpKT//S0y5q8ljPVxwX+/REOG3DhJUcl/Lcm4aOqtD4lVe7+S4bHTt5QzIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEGdvFI/84xxs/KMnhhfi3do2z6OE/1qKBVsUz9Cgf8xP0+SLTL0nT59nqj+3rtK7drBnm6n3b179tXdt9lCjqXcuLnnXNp3vHzckSZOm2Oqz9f7xR9Mb/WOYJKmsrMq7ts/1mHonqv2jkpxsMTJRbsi7dqin39S7zNnub2XOEFHkbDE/kfxvh5ZYMklypnr/xxRfnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjh7s+AS7168OEu+my0Lzjn//KM48s+mMivaflfoO+q/lpde2WPqffxop6k+Ve2fe1ZW6Z8dJkn9vf75YXHhmKl3zbRy79pMyj/vTpKqs/69Jang8t61fTpiW4shry1dljL1LuX9c8/eOWBb9+u/es27dsYUWz7elGmTTPXl1f6PK1GZ7TEoTvo/BjnjOYXpodP02OlXyxkQACAIBhAAIAgGEAAgCAYQACAIBh
AAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACCIszeKxzlFnjkRUcIQg5G0xWCUpfxjSsoythiZhPOf/0OD/nEcktR3zD8u560DtiieeRfOM9Wnsv6xJsfe6jD1rq33jxw6duSoqXeqf4p3ba7XduwzVaZyTZpS411bVWeLkVFZv3dpYdA/EkiScsdy3rVH3zho6v27V/Z518ZZ/22UpNRFc0z1FRXV3rXJtO33/thF3rUu8q+VJEX+j4eJMajlDAgAEIRpALW1tenSSy9VdXW16uvrdd1112nPnpG/PedyObW2tmrKlCmqqqrSqlWr1NlpC68EAEx8pgHU3t6u1tZWbd++Xc8++6yKxaKuvvpq9ff/9+ntXXfdpSeffFKPPfaY2tvbdejQIV1//fWjvnAAwPhmeg7o6aefHvH1xo0bVV9fr507d+qKK65Qd3e3HnroIW3atElXXXWVJOnhhx/WBRdcoO3bt+tTn/rU6K0cADCundZzQN3d3ZKkuro6SdLOnTtVLBa1bNmy4ZoFCxZo5syZ2rZt2wl75PN59fT0jLgAACa+Ux5AcRzrzjvv1OWXX66LL75YktTR0aF0Oq3a2toRtQ0NDeroOPGrm9ra2pTNZocvzc3Np7okAMA4csoDqLW1VS+//LIeffTR01rAunXr1N3dPXw5eND2UkwAwPh0Su8DWrNmjZ566im98MILmjFjxvD3GxsbVSgU1NXVNeIsqLOzU42NjSfslclklMn4f2QzAGBiMJ0BOee0Zs0abd68Wc8//7xmz5494vrFixcrlUppy5Ytw9/bs2ePDhw4oJaWltFZMQBgQjCdAbW2tmrTpk164oknVF1dPfy8TjabVUVFhbLZrG6++WatXbtWdXV1qqmp0R133KGWlhZeAQcAGME0gDZs2CBJuvLKK0d8/+GHH9ZNN90kSfrud7+rRCKhVatWKZ/Pa/ny5frhD384KosFAEwcpgHkPLLZysvLtX79eq1fv/6
UFyVJmaqEMhV+fyGcVFXu3bc6618rSRWVae/ayoztNR0lz6w7Scr12zLs3t57yLt2siGrTZLmnn+BqT5f8M8De+e3r5t6nzuv3ru2GPeaeufz/jlz6Um2p1OzU237fFJdrXdtvmjLDRzsOeZdm+uzZapFQ/73icbGrKl34rJLvGv73/E/lpJUiG2ZagOFQe/ayirb8XGGLDhDXJskKTYsxRmesYk9a8mCAwAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEcUofx3AmzLpwiiqq/D6mobK8wrtv5GwxGPFQybt2qFg09e7uHfCuzfUWTL17ev1jZ6ZOOfFHZZxMearSVP/6a3u9a/v7bPuwqm6ad+30WbYYptf/yz8WyMk/bkiSamtqTfXvHPOPy+nt7TP1jkv+t/FEZNuHqaR/73S1LUdm1nz/GKaBev9ILUkqk+0jYmprkt61/YVOU28lLfvFf39LkpN/79j5j4vYsy1nQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztosOBc7xZ6BQseP9Xj3zedsmWqDA/4ZX4WcLYcpjvzzo+pqaky9U2n/fdLfY8sxe+2V10z173T4Z1+lM7acuVLSfx9m6237cL5metcee+OQqffLfbbcs0nTqr1r48h2G08mUt61kSmXTJLzz/aLE0Om1lEy8q6tnGzLghs8blxL5H+7TZXZbof5obz/Ooz70JX87/tR7H8so5JfLWdAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgGEAAgCAYQACAIBhAAIAgztoongO/OaZMhV98RrHkH4GTKLNtcjqT8a5NZWzzvLzKfy3lxt654lHv2uqaClPvVHLAVJ8f8I8FylTbYkok/xgZpfxjeyQpO22ad23n4f2m3sd+122qv6R5lndtMmOMY4n8
Y2oSCds+jF3sX2zsbQm+ssQNSVJmUpWpfjBtWHtmiqm3DI9vceQflyNJKhpiuIr+x9JFfvFBnAEBAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgmAAAQCCYAABAIJgAAEAgjhrs+CGhhJKDPnNx4oa/9ymiupy0zrKDPlhUcKWwaWo4F1aGjJkNkmKh/yymCQpU5M19a6u9M/Hk6RyQ56eq5hs6p0on+TfW7asMVdR51077/Lppt65AVueXt+A//EsV6WpdzITedc6SwCbJMX+v+MOyZAbJymKnP8yItvCXZl/b0nq6/K/75cl/bP3JKmyxv945uJBU+/IkKXoEv7rHor8+nIGBAAIwjSA2tradOmll6q6ulr19fW67rrrtGfPnhE1V155paIoGnG57bbbRnXRAIDxzzSA2tvb1draqu3bt+vZZ59VsVjU1Vdfrf7+/hF1t9xyiw4fPjx8uf/++0d10QCA8c/0HNDTTz894uuNGzeqvr5eO3fu1BVXXDH8/crKSjU2No7OCgEAE9JpPQfU3f3uh2rV1Y18svbHP/6xpk6dqosvvljr1q3TwIc84ZrP59XT0zPiAgCY+E75VXBxHOvOO+/U5Zdfrosvvnj4+1/4whc0a9YsNTU1affu3frqV7+qPXv26Gc/+9kJ+7S1tenee+891WUAAMapUx5Ara2tevnll/XLX/5yxPdvvfXW4X9fcsklmj59upYuXap9+/Zp7ty5H+izbt06rV27dvjrnp4eNTc3n+qyAADjxCkNoDVr1uipp57SCy+8oBkzZnxo7ZIlSyRJe/fuPeEAymQyyhjeJwIAmBhMA8g5pzvuuEObN2/W1q1bNXv27I/8P7t27ZIkTZ9ue6MeAGBiMw2g1tZWbdq0SU888YSqq6vV0dEhScpms6qoqNC+ffu0adMm/eEf/qGmTJmi3bt366677tIVV1yhhQsXjskGAADGJ9MA2rBhg6R332z6P
z388MO66aablE6n9dxzz+mBBx5Qf3+/mpubtWrVKn39618ftQUDACYG85/gPkxzc7Pa29tPa0HvqW3IKuOZORZl/DO+UinbK8/Lkv45WaW8LW+qUPDPgitL2tY9VPKvP3LU9tL3dNo/e0+S6qb5Z6r1GPa3JE2q9N/nccl2fI539XnXppO25zHf/u2bpvqXtr3iXfvJyy4z9Z49v967dsjZssYSCf/jacl2k6TIcJeIbDcrJRL+GWmSlO/0vy8X4ymm3rMX+b8o68DRI6befSX/jMFi5H+/Lw769SULDgAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQxCl/HtBYc8mSXJlfdErsYu++ZTJGbAz4R2z0H+8y9U4YYoHKKipMvVPl/rEZA122eJUjb3eZ6tMV/jez2qx/rJIkNTb475ehgSFT7+Nvd3jX5ou241NTU26qn1TpX18YsB3PdOR/fIrGOKM44X8bN6blKPqIaLD/yZAIJEkaGiqa6uvqpnnX1lbPN/UuK/OPsiqp2tS733CfiOW/v4s5v1rOgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBMIAAAEEwgAAAQTCAAABBnLVZcKl0Rul0xqs2MqRIubwty+rYoXe8a6PIPytJkjLpSu/awYItx6yQ919LnLMFZR0bPGaqr23yz6WbUl1j6l2Ie7xrB3P+uX6SlCjzv3vkCrbbVVWtLZNw/kXneNce+d3bpt79Ped616aqbZl3ueKAd23SGthmuL+5yNa7lPDPl5SkoSjnX1y0HZ/Ow8e9a7uKtnXHKf+MwYQhBzCR8KvlDAgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMRZG8XjiiW5omecQ5T07psu86+VpOnn1HvXRsb4jnzRP77jeEeXqXfPsX7vWtdni/mpqL
bFmlRnp3rXZtJTTL2P9XZ41xbyeVPv8gr/2JlC/6Cpdylh2+d1U/33y5G3/I+9JL21b7937fyF80y9c8Vu79pS0nb/SUZ+UV3/f3dTb5ey/W5eKvOPeep3R229Y/+H6UlJ430zXfSujWP/WKVC5Lc/OAMCAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABMEAAgAEwQACAATBAAIABHHWZsEdeO2g0uUpr9pkwj/fLZWxZcFlMv7ZStbekyr8tk+SqhL+tZLUNM0/wy6f7jH1jlP+uVeSlJ3qvxYlK029ayY3edeW19v2Yb7bPz/sWOXbpt6DA7bsuGKvf+5Zuef95j0dh970rp1cV2vqPeWcKu/annyXqbcz3N0SkS1nLoqcqT5p2OVRZMsB7Os67l2bssUdqqEp613bG/vfZuOYLDgAwFnMNIA2bNighQsXqqamRjU1NWppadHPf/7z4etzuZxaW1s1ZcoUVVVVadWqVers7Bz1RQMAxj/TAJoxY4a+9a1vaefOndqxY4euuuoqXXvttXrllVckSXfddZeefPJJPfbYY2pvb9ehQ4d0/fXXj8nCAQDjm+k5oGuuuWbE13/7t3+rDRs2aPv27ZoxY4Yeeughbdq0SVdddZUk6eGHH9YFF1yg7du361Of+tTorRoAMO6d8nNApVJJjz76qPr7+9XS0qKdO3eqWCxq2bJlwzULFizQzJkztW3btpP2yefz6unpGXEBAEx85gH061//WlVVVcpkMrrtttu0efNmXXjhhero6FA6nVZtbe2I+oaGBnV0nPxTK9va2pTNZocvzc3N5o0AAIw/5gE0f/587dq1Sy+++KJuv/12rV69Wq+++uopL2DdunXq7u4evhw8ePCUewEAxg/z+4DS6bTOO+88SdLixYv1n//5n/re976nG264QYVCQV1dXSPOgjo7O9XY2HjSfplMRpmM5bPdAQATwWm/DyiOY+XzeS1evFi
pVEpbtmwZvm7Pnj06cOCAWlpaTvfHAAAmGNMZ0Lp167Ry5UrNnDlTvb292rRpk7Zu3apnnnlG2WxWN998s9auXau6ujrV1NTojjvuUEtLC6+AAwB8gGkAHTlyRH/yJ3+iw4cPK5vNauHChXrmmWf0B3/wB5Kk7373u0okElq1apXy+byWL1+uH/7wh6e0sEJPLFfwi8+wnMblk0XTOvoThtgMY8RGddY/v6OpYZqtd5N/pE3HQJep91AmbapXynCEkrYskYT8I1Pyg7Zjn6rwz3ppmlVn6p3rtkXDbHv+V9612aztL+uzzpntXXv4rTdMvatr5nvXZrO2fdiV6/KuLau2xRNFCVsUT6nY6987zpl6Vxsivmqra029yxL+981I/rFkvrWmW+pDDz30odeXl5dr/fr1Wr9+vaUtAOBjiCw4AEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEOY07LHm3LsRGMW8f2xKZJijUdIWgRKNYRRPwZBokxsomHqX5f33ST5ni6gpOdvvLbl+Q7xO0da7JP/j6Yb8o0QkqZT0j0BJGo99bsB2Oyzm/fsPFWxrsdzXhorG23je/3Yb5WzxNwXD7TYqs/W2RvHEhsMZOVvvRNH/dpgv2aKsLPdly7Es5N6tdR+xrZH7qIoz7K233uJD6QBgAjh48KBmzJhx0uvPugEUx7EOHTqk6upqRdF//8ba09Oj5uZmHTx4UDU1NQFXOLbYzonj47CNEts50YzGdjrn1Nvbq6amJiU+JPD0rPsTXCKR+NCJWVNTM6EP/nvYzonj47CNEts50Zzudmaz2Y+s4UUIAIAgGEAAgCDGzQDKZDK65557lMlkQi9lTLGdE8fHYRsltnOiOZPbeda9CAEA8PEwbs6AAAATCwMIABAEAwgAEAQDCAAQxLgZQOvXr9e5556r8vJyLVmyRP/xH/8Rekmj6pvf/KaiKBpxWbBgQehlnZYX
XnhB11xzjZqamhRFkR5//PER1zvndPfdd2v69OmqqKjQsmXL9Prrr4dZ7Gn4qO286aabPnBsV6xYEWaxp6itrU2XXnqpqqurVV9fr+uuu0579uwZUZPL5dTa2qopU6aoqqpKq1atUmdnZ6AVnxqf7bzyyis/cDxvu+22QCs+NRs2bNDChQuH32za0tKin//858PXn6ljOS4G0E9+8hOtXbtW99xzj371q19p0aJFWr58uY4cORJ6aaPqoosu0uHDh4cvv/zlL0Mv6bT09/dr0aJFWr9+/Qmvv//++/X9739fDz74oF588UVNmjRJy5cvVy6XO8MrPT0ftZ2StGLFihHH9pFHHjmDKzx97e3tam1t1fbt2/Xss8+qWCzq6quvVn9//3DNXXfdpSeffFKPPfaY2tvbdejQIV1//fUBV23ns52SdMstt4w4nvfff3+gFZ+aGTNm6Fvf+pZ27typHTt26KqrrtK1116rV155RdIZPJZuHLjssstca2vr8NelUsk1NTW5tra2gKsaXffcc49btGhR6GWMGUlu8+bNw1/HcewaGxvdt7/97eHvdXV1uUwm4x555JEAKxwd799O55xbvXq1u/baa4OsZ6wcOXLESXLt7e3OuXePXSqVco899thwzX/91385SW7btm2hlnna3r+dzjn3+7//++7P//zPwy1qjEyePNn9/d///Rk9lmf9GVChUNDOnTu1bNmy4e8lEgktW7ZM27ZtC7iy0ff666+rqalJc+bM0Re/+EUdOHAg9JLGzP79+9XR0THiuGazWS1ZsmTCHVdJ2rp1q+rr6zV//nzdfvvtOnr0aOglnZbu7m5JUl1dnSRp586dKhaLI47nggULNHPmzHF9PN+/ne/58Y9/rKlTp+riiy/WunXrNDAwEGJ5o6JUKunRRx9Vf3+/WlpazuixPOvCSN/vnXfeUalUUkNDw4jvNzQ06LXXXgu0qtG3ZMkSbdy4UfPnz9fhw4d177336
jOf+YxefvllVVdXh17eqOvo6JCkEx7X966bKFasWKHrr79es2fP1r59+/RXf/VXWrlypbZt26ak4TOHzhZxHOvOO+/U5ZdfrosvvljSu8cznU6rtrZ2RO14Pp4n2k5J+sIXvqBZs2apqalJu3fv1le/+lXt2bNHP/vZzwKu1u7Xv/61WlpalMvlVFVVpc2bN+vCCy/Url27ztixPOsH0MfFypUrh/+9cOFCLVmyRLNmzdJPf/pT3XzzzQFXhtN14403Dv/7kksu0cKFCzV37lxt3bpVS5cuDbiyU9Pa2qqXX3553D9H+VFOtp233nrr8L8vueQSTZ8+XUuXLtW+ffs0d+7cM73MUzZ//nzt2rVL3d3d+qd/+ietXr1a7e3tZ3QNZ/2f4KZOnapkMvmBV2B0dnaqsbEx0KrGXm1trc4//3zt3bs39FLGxHvH7uN2XCVpzpw5mjp16rg8tmvWrNFTTz2lX/ziFyM+NqWxsVGFQkFdXV0j6sfr8TzZdp7IkiVLJGncHc90Oq3zzjtPixcvVltbmxYtWqTvfe97Z/RYnvUDKJ1Oa/HixdqyZcvw9+I41pYtW9TS0hJwZWOrr69P+/bt0/Tp00MvZUzMnj1bjY2NI45rT0+PXnzxxQl9XKV3P/X36NGj4+rYOue0Zs0abd68Wc8//7xmz5494vrFixcrlUqNOJ579uzRgQMHxtXx/KjtPJFdu3ZJ0rg6nicSx7Hy+fyZPZaj+pKGMfLoo4+6TCbjNm7c6F599VV36623utraWtfR0RF6aaPmL/7iL9zWrVvd/v373b/927+5ZcuWualTp7ojR46EXtop6+3tdS+99JJ76aWXnCT3ne98x7300kvuzTffdM45961vfcvV1ta6J554wu3evdtde+21bvbs2W5wcDDwym0+bDt7e3vdl7/8Zbdt2za3f/9+99xzz7nf+73fc/PmzXO5XC700r3dfvvtLpvNuq1bt7rDhw8PXwYGBoZrbr
vtNjdz5kz3/PPPux07driWlhbX0tIScNV2H7Wde/fudffdd5/bsWOH279/v3viiSfcnDlz3BVXXBF45TZf+9rXXHt7u9u/f7/bvXu3+9rXvuaiKHL/8i//4pw7c8dyXAwg55z7wQ9+4GbOnOnS6bS77LLL3Pbt20MvaVTdcMMNbvr06S6dTrtzzjnH3XDDDW7v3r2hl3VafvGLXzhJH7isXr3aOffuS7G/8Y1vuIaGBpfJZNzSpUvdnj17wi76FHzYdg4MDLirr77aTZs2zaVSKTdr1ix3yy23jLtfnk60fZLcww8/PFwzODjo/uzP/sxNnjzZVVZWus997nPu8OHD4RZ9Cj5qOw8cOOCuuOIKV1dX5zKZjDvvvPPcX/7lX7ru7u6wCzf60z/9Uzdr1iyXTqfdtGnT3NKlS4eHj3Nn7ljycQwAgCDO+ueAAAATEwMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEAQDCAAQBAMIABAEAwgAEMT/B5JVDaVYFj2wAAAAAElFTkSuQmCC\n"
+ },
+ "metadata": {}
+ }
+ ],
+ "source": [
+ "x_train = (x_train - np.min(x_train)) / (np.max(x_train) -
np.min(x_train))\n",
+ "plt.imshow(x_train[800])"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "source": [
+ "**Grayscale Conversion** refers to the conversion of a colored image
in RGB scale into a grayscale image. It represents the pixel intensities
without considering colors, which makes calculations easier."
+ ],
+ "metadata": {
+ "id": "bfgy0Z_gX_lH"
+ }
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "P2oPvZkbfEPo"
+ },
+ "outputs": [],
+ "source": [
+ "grayscale = []\n",
+ "for i in x_train:\n",
+ " grayImage = 0.07 * i[:,:,2] + 0.72 * i[:,:,1] + 0.21 * i[:,:,0]\n",
+ " grayscale.append(grayImage)\n",
+ "x_train_gray = np.asarray(grayscale)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "jzQ2Zulg99NU"
+ },
+ "source": [
+ "## Defining DoFns for Image Preprocessing\n",
+ "\n",
+
"[DoFn](https://beam.apache.org/releases/typedoc/current/interfaces/transforms_pardo.DoFn)
stands for \"Do Function\". In Apache Beam, it is a set of operations that can
be applied to individual elements of a PCollection (a collection of data). It
is similar to a function in Python, except that it is used in Beam Pipelines to
apply various transformations. DoFns can be used in various Apache Beam
transforms, such as ParDo, Map, Filter, and FlatMap."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "cqm-m0cONsZS"
+ },
+ "outputs": [],
+ "source": [
+ "class StandardizeImage(beam.DoFn):\n",
+ " def process(self, element: np.ndarray):\n",
+ " element = element/255.0\n",
+ " return [element]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "mZhFCgPxPEwm"
+ },
+ "outputs": [],
+ "source": [
+ "class NormalizeImage(beam.DoFn):\n",
+ " def process(self, element: np.ndarray):\n",
+ " element =
(element-element.min())/(element.max()-element.min())\n",
+ " return [element]"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "metadata": {
+ "id": "gv23KPt5NyXT"
+ },
+ "outputs": [],
+ "source": [
+ "class GrayscaleImage(beam.DoFn):\n",
+ " def process(self, element: np.ndarray):\n",
+ " element = 0.07 * element[:,:,2] + 0.72 * element[:,:,1] + 0.21 *
element[:,:,0]\n",
+ " return [element]"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "8gz7_SvN-P2L"
+ },
+ "source": [
+ "## Training a Convolutional Neural Network\n",
+ "\n",
+ "A Convolutional Neural Network (CNN) is one of the most popular model
for image processing. Here is a brief description of the convolutional layers
used in the model.\n",
+ "* **Reshape**: Changes the shape of the input data to the desired
size. <br>\n",
Review Comment:
The bullet, line break format here creates weird formatting on GitHub. Could
we just get rid of the `<br>` tags?
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]