dependabot[bot] opened a new pull request, #33943:
URL: https://github.com/apache/beam/pull/33943

   Bumps [transformers](https://github.com/huggingface/transformers) from 
4.30.0 to 4.48.0.
   <details>
   <summary>Release notes</summary>
   <p><em>Sourced from <a 
href="https://github.com/huggingface/transformers/releases";>transformers's 
releases</a>.</em></p>
   <blockquote>
   <h2>v4.48.0: ModernBERT, Aria, TimmWrapper, ColPali, Falcon3, Bamba, 
VitPose, DinoV2 w/ Registers, Emu3, Cohere v2, TextNet, DiffLlama, 
PixtralLarge, Moonshine</h2>
   <h2>New models</h2>
   <h3>ModernBERT</h3>
   <p>The ModernBert model was proposed in <a 
href="https://arxiv.org/abs/2412.13663";>Smarter, Better, Faster, Longer: A 
Modern Bidirectional Encoder for Fast, Memory Efficient, and Long Context 
Finetuning and Inference</a> by Benjamin Warner, Antoine Chaffin, Benjamin 
Clavié, Orion Weller, Oskar Hallström, Said Taghadouini, Alexis Galalgher, Raja 
Bisas, Faisal Ladhak, Tom Aarsen, Nathan Cooper, Grifin Adams, Jeremy Howard 
and Iacopo Poli.</p>
   <p>It is a refresh of the traditional encoder architecture, as used in 
previous models such as <a 
href="https://huggingface.co/docs/transformers/en/model_doc/bert";>BERT</a> and 
<a 
href="https://huggingface.co/docs/transformers/en/model_doc/roberta";>RoBERTa</a>.</p>
   <p>It builds on BERT and implements many modern architectural improvements 
which have been developed since its original release, such as:</p>
   <ul>
   <li><a 
href="https://huggingface.co/blog/designing-positional-encoding";>Rotary 
Positional Embeddings</a> to support sequences of up to 8192 tokens.</li>
   <li><a href="https://arxiv.org/abs/2208.08124";>Unpadding</a> to ensure no 
compute is wasted on padding tokens, speeding up processing time for batches 
with mixed-length sequences.</li>
   <li><a href="https://arxiv.org/abs/2002.05202";>GeGLU</a> Replacing the 
original MLP layers with GeGLU layers, shown to improve performance.</li>
   <li><a href="https://arxiv.org/abs/2004.05150v2";>Alternating Attention</a> 
where most attention layers employ a sliding window of 128 tokens, with Global 
Attention only used every 3 layers.</li>
   <li><a href="https://github.com/Dao-AILab/flash-attention";>Flash 
Attention</a> to speed up processing.</li>
   <li>A model designed following recent <a 
href="https://arxiv.org/abs/2401.14489";>The Case for Co-Designing Model 
Architectures with Hardware</a>, ensuring maximum efficiency across inference 
GPUs.</li>
   <li>Modern training data scales (2 trillion tokens) and mixtures (including 
code ande math data)</li>
   </ul>
   <p><img 
src="https://github.com/user-attachments/assets/4256c0b1-9b40-4d71-ac42-fc94827d5e9d";
 alt="image" /></p>
   <ul>
   <li>Add ModernBERT to Transformers  by <a 
href="https://github.com/warner-benjamin";><code>@​warner-benjamin</code></a> in 
<a 
href="https://redirect.github.com/huggingface/transformers/issues/35158";>#35158</a></li>
   </ul>
   <h3>Aria</h3>
   <p>The Aria model was proposed in <a 
href="https://huggingface.co/papers/2410.05993";>Aria: An Open Multimodal Native 
Mixture-of-Experts Model</a> by Li et al. from the Rhymes.AI team.</p>
   <p>Aria is an open multimodal-native model with best-in-class performance 
across a wide range of multimodal, language, and coding tasks. It has a 
Mixture-of-Experts architecture, with respectively 3.9B and 3.5B activated 
parameters per visual token and text token.</p>
   <ul>
   <li>Add Aria  by <a 
href="https://github.com/aymeric-roucher";><code>@​aymeric-roucher</code></a> in 
<a 
href="https://redirect.github.com/huggingface/transformers/issues/34157";>#34157</a>
   <img 
src="https://github.com/user-attachments/assets/ef41fcc9-2c5f-4a75-ab1a-438f73d3d7e2";
 alt="image" /></li>
   </ul>
   <h3>TimmWrapper</h3>
   <p>We add a <code>TimmWrapper</code> set of classes such that timm models 
can be loaded in as transformer models into the library.</p>
   <p>Here's a general usage example:</p>
   <pre lang="py"><code>import torch
   from urllib.request import urlopen
   from PIL import Image
   from transformers import AutoConfig, AutoModelForImageClassification, 
AutoImageProcessor
   <p>checkpoint = &quot;timm/resnet50.a1_in1k&quot;
   img = Image.open(urlopen(
   '<a 
href="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png";>https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png</a>'
   ))</p>
   <p>image_processor = AutoImageProcessor.from_pretrained(checkpoint)
   &lt;/tr&gt;&lt;/table&gt;
   </code></pre></p>
   </blockquote>
   <p>... (truncated)</p>
   </details>
   <details>
   <summary>Commits</summary>
   <ul>
   <li><a 
href="https://github.com/huggingface/transformers/commit/6bc0fbcfa7acb6ac4937e7456a76c2f7975fefec";><code>6bc0fbc</code></a>
 [WIP] Emu3: add model (<a 
href="https://redirect.github.com/huggingface/transformers/issues/33770";>#33770</a>)</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/59e28c30fa3a91213f569bccef73f082afa8c656";><code>59e28c3</code></a>
 Fix flex_attention in training mode (<a 
href="https://redirect.github.com/huggingface/transformers/issues/35605";>#35605</a>)</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/7cf6230e25078742b21907ae49d1542747606457";><code>7cf6230</code></a>
 push a fix for now</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/d6f446ffa79811d35484d445bc5c7932e8a536d6";><code>d6f446f</code></a>
 when filtering we can't use the convert script as we removed them</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/8ce1e9578af6151e4192d59c345e2ad86ee789d4";><code>8ce1e95</code></a>
 [test-all]</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/af2d7caff393cf8881396b73d92d0595b6a3b2ae";><code>af2d7ca</code></a>
 Add Moonshine  (<a 
href="https://redirect.github.com/huggingface/transformers/issues/34784";>#34784</a>)</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/42b8e7916b6b6dff5cb77252286db1aa07b7b41e";><code>42b8e79</code></a>
 ModernBert: reuse GemmaRotaryEmbedding via modular + Integration tests (<a 
href="https://redirect.github.com/huggingface/transformers/issues/35459";>#35459</a>)</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/e39c9f7a78fa2960a7045e8fc5a2d96b5d7eebf1";><code>e39c9f7</code></a>
 v4.48-release</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/8de7b1ba8d126a6fc9f9bcc3173a71b46f0c3601";><code>8de7b1b</code></a>
 Add flex_attn to diffllama (<a 
href="https://redirect.github.com/huggingface/transformers/issues/35601";>#35601</a>)</li>
   <li><a 
href="https://github.com/huggingface/transformers/commit/1e3ddcb2d0380d0d909a44edc217dff68956ec5e";><code>1e3ddcb</code></a>
 ModernBERT bug fixes (<a 
href="https://redirect.github.com/huggingface/transformers/issues/35404";>#35404</a>)</li>
   <li>Additional commits viewable in <a 
href="https://github.com/huggingface/transformers/compare/v4.30.0...v4.48.0";>compare
 view</a></li>
   </ul>
   </details>
   <br />
   
   
   [![Dependabot compatibility 
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=transformers&package-manager=pip&previous-version=4.30.0&new-version=4.48.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
   
   Dependabot will resolve any conflicts with this PR as long as you don't 
alter it yourself. You can also trigger a rebase manually by commenting 
`@dependabot rebase`.
   
   [//]: # (dependabot-automerge-start)
   [//]: # (dependabot-automerge-end)
   
   ---
   
   <details>
   <summary>Dependabot commands and options</summary>
   <br />
   
   You can trigger Dependabot actions by commenting on this PR:
   - `@dependabot rebase` will rebase this PR
   - `@dependabot recreate` will recreate this PR, overwriting any edits that 
have been made to it
   - `@dependabot merge` will merge this PR after your CI passes on it
   - `@dependabot squash and merge` will squash and merge this PR after your CI 
passes on it
   - `@dependabot cancel merge` will cancel a previously requested merge and 
block automerging
   - `@dependabot reopen` will reopen this PR if it is closed
   - `@dependabot close` will close this PR and stop Dependabot recreating it. 
You can achieve the same result by closing it manually
   - `@dependabot show <dependency name> ignore conditions` will show all of 
the ignore conditions of the specified dependency
   - `@dependabot ignore this major version` will close this PR and stop 
Dependabot creating any more for this major version (unless you reopen the PR 
or upgrade to it yourself)
   - `@dependabot ignore this minor version` will close this PR and stop 
Dependabot creating any more for this minor version (unless you reopen the PR 
or upgrade to it yourself)
   - `@dependabot ignore this dependency` will close this PR and stop 
Dependabot creating any more for this dependency (unless you reopen the PR or 
upgrade to it yourself)
   You can disable automated security fix PRs for this repo from the [Security 
Alerts page](https://github.com/apache/beam/network/alerts).
   
   </details>


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@beam.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to