shunping commented on issue #33815:
URL: https://github.com/apache/beam/issues/33815#issuecomment-2844087710

   I can reproduce this with a simplified pipeline in Python as well.
   
   ```python
   import apache_beam as beam
   from apache_beam.options.pipeline_options import PipelineOptions
   from apache_beam.transforms.periodicsequence import PeriodicImpulse
   from apache_beam.utils.timestamp import Timestamp
   
   options = PipelineOptions([
       "--streaming",
       "--job_server_timeout=600",
       "--environment_type=LOOPBACK",
       #"--runner=PrismRunner", "--prism_beam_version_override=v2.64.0",
       "--runner=PortableRunner",
       "--job_endpoint=localhost:8073",
   ])
   
   
   class InitCount(beam.DoFn):
   
     def process(self, element):
       return [1]
   
   class PlusOne(beam.DoFn):
   
     def process(self, element):
       print(element)
       return [element + 1]
   
   
   INT32_MAX_TIMESTAMP = Timestamp(micros=2147483647 * 1000)
   
   duration = 5
   
   ## windowing before flatten
   with beam.Pipeline(options=options) as p:
     unboundedSource = p | "s2" >> PeriodicImpulse(
         start_timestamp=INT32_MAX_TIMESTAMP, fire_interval=duration)
     c = unboundedSource | "i2" >> beam.ParDo(InitCount())
     _ = c | beam.Reshuffle() | beam.ParDo(PlusOne())
   
   ```


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: github-unsubscr...@beam.apache.org

For queries about this service, please contact Infrastructure at:
us...@infra.apache.org

Reply via email to