shunping commented on issue #33815: URL: https://github.com/apache/beam/issues/33815#issuecomment-2844087710
I can reproduce this with a simplified pipeline in Python as well. ```python import apache_beam as beam from apache_beam.options.pipeline_options import PipelineOptions from apache_beam.transforms.periodicsequence import PeriodicImpulse from apache_beam.utils.timestamp import Timestamp options = PipelineOptions([ "--streaming", "--job_server_timeout=600", "--environment_type=LOOPBACK", #"--runner=PrismRunner", "--prism_beam_version_override=v2.64.0", "--runner=PortableRunner", "--job_endpoint=localhost:8073", ]) class InitCount(beam.DoFn): def process(self, element): return [1] class PlusOne(beam.DoFn): def process(self, element): print(element) return [element + 1] INT32_MAX_TIMESTAMP = Timestamp(micros=2147483647 * 1000) duration = 5 ## windowing before flatten with beam.Pipeline(options=options) as p: unboundedSource = p | "s2" >> PeriodicImpulse( start_timestamp=INT32_MAX_TIMESTAMP, fire_interval=duration) c = unboundedSource | "i2" >> beam.ParDo(InitCount()) _ = c | beam.Reshuffle() | beam.ParDo(PlusOne()) ``` -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@beam.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org