aditya0yadav commented on code in PR #34700: URL: https://github.com/apache/beam/pull/34700#discussion_r2079025112
########## sdks/python/apache_beam/ml/transforms/embeddings/open_ai.py: ########## @@ -0,0 +1,204 @@ +# Licensed to the Apache Software Foundation (ASF) under one or more +# contributor license agreements. See the NOTICE file distributed with +# this work for additional information regarding copyright ownership. +# The ASF licenses this file to You under the Apache License, Version 2.0 +# (the "License"); you may not use this file except in compliance with +# the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import logging +from collections.abc import Iterable +from collections.abc import Sequence +from typing import Any +from typing import Optional +from typing import TypeVar +from typing import Union +from typing import cast + +import apache_beam as beam +import openai +from apache_beam.ml.inference.base import RemoteModelHandler +from apache_beam.ml.inference.base import RunInference +from apache_beam.ml.transforms.base import EmbeddingsManager +from apache_beam.ml.transforms.base import _TextEmbeddingHandler +from apache_beam.pvalue import PCollection +from apache_beam.pvalue import Row +from openai import APIError +from openai import RateLimitError + +__all__ = ["OpenAITextEmbeddings"] + +# Define a type variable for the output +MLTransformOutputT = TypeVar('MLTransformOutputT') + +_BATCH_SIZE = 20 + +LOGGER = logging.getLogger("OpenAIEmbeddings") + + +def _retry_on_appropriate_openai_error(exception): # pylint: disable=line-too-long + """ + Retry filter that returns True for rate limit (429) or server (5xx) errors. + + Args: + exception: the returned exception encountered during the request/response + loop. + + Returns: + boolean indication whether or not the exception is a Server Error (5xx) or + a RateLimitError (429) error. + """ + return isinstance(exception, (RateLimitError, APIError)) + + +class _OpenAITextEmbeddingHandler(RemoteModelHandler): + """ + Note: Intended for internal use and guarantees no backwards compatibility. + """ + def __init__( + self, + model_name: str, + api_key: Optional[str] = None, + organization: Optional[str] = None, + dimensions: Optional[int] = None, + user: Optional[str] = None, + batch_size: Optional[int] = None, + ): + super().__init__( + namespace="OpenAITextEmbeddings", + num_retries=5, + throttle_delay_secs=5, + retry_filter=_retry_on_appropriate_openai_error) + self.model_name = model_name + self.api_key = api_key + self.organization = organization + self.dimensions = dimensions + self.user = user + self.batch_size = batch_size or _BATCH_SIZE + + def create_client(self): + """Creates and returns an OpenAI client.""" + if self.api_key: + client = openai.OpenAI( + api_key=self.api_key, + organization=self.organization, + ) + else: + client = openai.OpenAI(organization=self.organization) + + return client + + def request( + self, + batch: Sequence[str], + model: Any, + inference_args: Optional[dict[str, Any]] = None, + ) -> Iterable: + """Makes a request to OpenAI embedding API and returns embeddings.""" + # Process in smaller batches if needed + if len(batch) > self.batch_size: + embeddings = [] + for i in range(0, len(batch), self.batch_size): + text_batch = batch[i:i + self.batch_size] + # Use request() recursively for each smaller batch + embeddings_batch = self.request(text_batch, model, inference_args) + embeddings.extend(embeddings_batch) + return embeddings Review Comment: completed @jrmccluskey -- This is an automated message from the Apache Git Service. To respond to the message, please log on to GitHub and use the URL above to go to the specific comment. To unsubscribe, e-mail: github-unsubscr...@beam.apache.org For queries about this service, please contact Infrastructure at: us...@infra.apache.org