GaetanLepage commented on issue #33854:
URL: https://github.com/apache/beam/issues/33854#issuecomment-3321807582

   On apache-beam 2.68.0, we have one occurence left:
   ```
   ______________ PipelineTest.test_runner_overrides_default_pickler 
______________
   [gw40] linux -- Python 3.13.7 
/nix/store/829wb290i87wngxlh404klwxql5v18p4-python3-3.13.7/bin/python3.13
   
   self = <apache_beam.pipeline_test.PipelineTest 
testMethod=test_runner_overrides_default_pickler>
   mock_info = <MagicMock name='info' id='140719519900944'>
   
       @mock.patch('logging.info')
       def test_runner_overrides_default_pickler(self, mock_info):
         with mock.patch.object(PipelineRunner,
                                'default_pickle_library_override') as mock_fn:
           mock_fn.return_value = 'dill'
   >       with TestPipeline() as pipeline:
                ^^^^^^^^^^^^^^
   
   apache_beam/pipeline_test.py:184:
   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _
   apache_beam/pipeline.py:666: in __exit__
       self.result = self.run()
                     ^^^^^^^^^^
   apache_beam/testing/test_pipeline.py:118: in run
       result = super().run(
   apache_beam/pipeline.py:613: in run
       return Pipeline.from_runner_api(
   apache_beam/pipeline.py:1103: in from_runner_api
       p.transforms_stack = [context.transforms.get_by_id(root_transform_id)]
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   apache_beam/runners/pipeline_context.py:106: in get_by_id
       self._id_to_obj[id] = self._obj_type.from_runner_api(
   apache_beam/pipeline.py:1530: in from_runner_api
       part = context.transforms.get_by_id(transform_id)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   apache_beam/runners/pipeline_context.py:106: in get_by_id
       self._id_to_obj[id] = self._obj_type.from_runner_api(
   apache_beam/pipeline.py:1530: in from_runner_api
       part = context.transforms.get_by_id(transform_id)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   apache_beam/runners/pipeline_context.py:106: in get_by_id
       self._id_to_obj[id] = self._obj_type.from_runner_api(
   apache_beam/pipeline.py:1530: in from_runner_api
       part = context.transforms.get_by_id(transform_id)
              ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
   apache_beam/runners/pipeline_context.py:106: in get_by_id
       self._id_to_obj[id] = self._obj_type.from_runner_api(
   apache_beam/pipeline.py:1516: in from_runner_api
       result = AppliedPTransform(
   _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 
_ _
   
   self = AppliedPTransform(assert_that/Create/MaybeReshuffle, MaybeReshuffle)
   parent = None
   transform = 
<apache_beam.transforms.core.Create.expand.<locals>.MaybeReshuffle object at 
0x7ffbd03a6900>
   full_label = 'assert_that/Create/MaybeReshuffle'
   main_inputs = {'None': <PCollection[assert_that/Create/FlatMap(<lambda at 
core.py:4094>).None] at 0x7ffbd041bdd0>}
   environment_id = None
   annotations = {'python_type': 
b'apache_beam.transforms.core.Create.expand.<locals>.MaybeReshuffle'}
   
       def __init__(
           self,
           parent,  # type:  Optional[AppliedPTransform]
           transform,  # type: Optional[ptransform.PTransform]
           full_label,  # type: str
           main_inputs,  # type: Optional[Mapping[str, Union[pvalue.PBegin, 
pvalue.PCollection]]]
           environment_id,  # type: Optional[str]
           annotations,  # type: Optional[Dict[str, bytes]]
       ):
         # type: (...) -> None
         self.parent = parent
         self.transform = transform
         # Note that we want the PipelineVisitor classes to use the full_label,
         # inputs, side_inputs, and outputs fields from this instance instead 
of the
         # ones of the PTransform instance associated with it. Doing this 
permits
         # reusing PTransform instances in different contexts (apply() calls) 
without
         # any interference. This is particularly useful for composite 
transforms.
         self.full_label = full_label
         self.main_inputs = dict(main_inputs or {})
   
   >     self.side_inputs = tuple() if transform is None else 
transform.side_inputs
                                                              
^^^^^^^^^^^^^^^^^^^^^
   E     AttributeError: 'MaybeReshuffle' object has no attribute 'side_inputs'
   
   apache_beam/pipeline.py:1229: AttributeError
   ```
   
   https://github.com/NixOS/nixpkgs/pull/445349


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to