dependabot[bot] opened a new pull request, #36666:
URL: https://github.com/apache/beam/pull/36666

   Bumps [keras](https://github.com/keras-team/keras) from 3.10.0 to 3.12.0.
   <details>
   <summary>Release notes</summary>
   <p><em>Sourced from <a 
href="https://github.com/keras-team/keras/releases";>keras's 
releases</a>.</em></p>
   <blockquote>
   <h2>Keras 3.12.0</h2>
   <h2>Highlights</h2>
   <h3>Keras has a new model distillation API!</h3>
   <p>You now have access to an easy-to-use API for distilling large models 
into small models while minimizing performance drop on a reference dataset -- 
compatible with all existing Keras models. You can specify a range of different 
distillation losses, or create your own losses. The API supports multiple 
concurrent distillation losses at the same time.</p>
   <p>Example:</p>
   <pre lang="python"><code># Load a model to distill
   teacher = ...
   # This is the model we want to distill it into
   student = ...
   <h1>Configure the process</h1>
   <p>distiller = Distiller(
   teacher=teacher,
   student=student,
   distillation_losses=LogitsDistillation(temperature=3.0),
   )
   distiller.compile(
   optimizer='adam',
   loss='sparse_categorical_crossentropy',
   metrics=['accuracy']
   )</p>
   <h1>Train the distilled model</h1>
   <p>distiller.fit(x_train, y_train, epochs=10)
   </code></pre></p>
   <h3>Keras supports GPTQ quantization!</h3>
   <p>GPTQ is now built into the Keras API. GPTQ is a post-training, 
weights-only quantization method that compresses a model to int4 layer by 
layer. For each layer, it uses a second-order method to update weights while 
minimizing the error on a calibration dataset.</p>
   <p>Learn how to use it <a 
href="https://keras.io/guides/gptq_quantization_in_keras/";>in this 
guide</a>.</p>
   <p>Example:</p>
   <pre lang="python"><code>model = 
keras_hub.models.Gemma3CausalLM.from_preset(&quot;gemma3_1b&quot;)
   gptq_config = keras.quantizers.GPTQConfig(
       dataset=calibration_dataset,
       tokenizer=model.preprocessor.tokenizer,
       weight_bits=4,
       group_size=128,
       num_samples=256,
       sequence_length=256,
       hessian_damping=0.01,
       symmetric=False,
   &lt;/tr&gt;&lt;/table&gt; 
   </code></pre>
   </blockquote>
   <p>... (truncated)</p>
   </details>
   <details>
   <summary>Commits</summary>
   <ul>
   <li><a 
href="https://github.com/keras-team/keras/commit/adbfd13426a0da9864d9a0fcd5be5eed74ca341f";><code>adbfd13</code></a>
 Add warning to <code>set_backend</code> and more detailed example. (<a 
href="https://redirect.github.com/keras-team/keras/issues/21787";>#21787</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/70598b7903314f7ceace49264de97f1ee91230a8";><code>70598b7</code></a>
 Fix typo in Distiller docstring</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/eecd34f406709e6ce44c5d94be32d8d81c7fe13d";><code>eecd34f</code></a>
 Fix: <code>keras.ops.quantile</code> works with tf graph execution (<a 
href="https://redirect.github.com/keras-team/keras/issues/21782";>#21782</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/c2bc6cfcc79d958d2e5a9bc0c829486d5a7fd0ac";><code>c2bc6cf</code></a>
 Suport keras.op.view() to view the same data bitwise at a new dtype  (<a 
href="https://redirect.github.com/keras-team/keras/issues/21763";>#21763</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/10b51ce5a5054eb9bcddfab405ac9075fb1f1ca7";><code>10b51ce</code></a>
 Make confusion metrics compilable. (<a 
href="https://redirect.github.com/keras-team/keras/issues/21775";>#21775</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/18f79d69c9443b21ac4ac902a5f808237708cdde";><code>18f79d6</code></a>
 Fix negative index handling in MultiHeadAttention attention_axes (<a 
href="https://redirect.github.com/keras-team/keras/issues/21721";>#21721</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/18e0364cbcd1bfe26e43a4986df59bbf758e94a8";><code>18e0364</code></a>
 Support for extracting volume patches (<a 
href="https://redirect.github.com/keras-team/keras/issues/21759";>#21759</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/dc5e42cca4fc966916552154d2edfb9f9aef3fcf";><code>dc5e42c</code></a>
 fix sas metrics in jax <code>fit</code> (<a 
href="https://redirect.github.com/keras-team/keras/issues/21765";>#21765</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/1ba3b8f896fbbba30bdcff65483b1dafa356c604";><code>1ba3b8f</code></a>
 Fix discretization discrepancy (<a 
href="https://redirect.github.com/keras-team/keras/issues/21769";>#21769</a>)</li>
   <li><a 
href="https://github.com/keras-team/keras/commit/53987a768def7fb4d6222d5da25484ea4ed76360";><code>53987a7</code></a>
 Document that <code>set_backend</code> requires re-importing keras. (<a 
href="https://redirect.github.com/keras-team/keras/issues/21764";>#21764</a>)</li>
   <li>Additional commits viewable in <a 
href="https://github.com/keras-team/keras/compare/v3.10.0...v3.12.0";>compare 
view</a></li>
   </ul>
   </details>
   <br />
   
   
   [![Dependabot compatibility 
score](https://dependabot-badges.githubapp.com/badges/compatibility_score?dependency-name=keras&package-manager=pip&previous-version=3.10.0&new-version=3.12.0)](https://docs.github.com/en/github/managing-security-vulnerabilities/about-dependabot-security-updates#about-compatibility-scores)
   
   Dependabot will resolve any conflicts with this PR as long as you don't 
alter it yourself. You can also trigger a rebase manually by commenting 
`@dependabot rebase`.
   
   [//]: # (dependabot-automerge-start)
   [//]: # (dependabot-automerge-end)
   
   ---
   
   <details>
   <summary>Dependabot commands and options</summary>
   <br />
   
   You can trigger Dependabot actions by commenting on this PR:
   - `@dependabot rebase` will rebase this PR
   - `@dependabot recreate` will recreate this PR, overwriting any edits that 
have been made to it
   - `@dependabot merge` will merge this PR after your CI passes on it
   - `@dependabot squash and merge` will squash and merge this PR after your CI 
passes on it
   - `@dependabot cancel merge` will cancel a previously requested merge and 
block automerging
   - `@dependabot reopen` will reopen this PR if it is closed
   - `@dependabot close` will close this PR and stop Dependabot recreating it. 
You can achieve the same result by closing it manually
   - `@dependabot show <dependency name> ignore conditions` will show all of 
the ignore conditions of the specified dependency
   - `@dependabot ignore this major version` will close this PR and stop 
Dependabot creating any more for this major version (unless you reopen the PR 
or upgrade to it yourself)
   - `@dependabot ignore this minor version` will close this PR and stop 
Dependabot creating any more for this minor version (unless you reopen the PR 
or upgrade to it yourself)
   - `@dependabot ignore this dependency` will close this PR and stop 
Dependabot creating any more for this dependency (unless you reopen the PR or 
upgrade to it yourself)
   You can disable automated security fix PRs for this repo from the [Security 
Alerts page](https://github.com/apache/beam/network/alerts).
   
   </details>


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]

Reply via email to